
Anatomy of GPU Memory System for
Multi-Application Execution

Adwait Jog1∗ Onur Kayiran4∗ Tuba Kesten2 Ashutosh Pattnaik2

Evgeny Bolotin3 Niladrish Chatterjee3 Stephen W. Keckler3,5
Mahmut T. Kandemir2 Chita R. Das2

1College of William and Mary 2Pennsylvania State University 3NVIDIA
4Advanced Micro Devices, Inc. 5University of Texas at Austin

adwait@cs.wm.edu, onur.kayiran@amd.com, (tzk133, ashutosh, kandemir, das)@cse.psu.edu
(ebolotin, nchatterjee, skeckler)@nvidia.com

ABSTRACT
As GPUs make headway in the computing landscape span-
ning mobile platforms, supercomputers, cloud and virtual
desktop platforms, supporting concurrent execution of mul-
tiple applications in GPUs becomes essential for unlock-
ing their full potential. However, unlike CPUs, multi-
application execution in GPUs is little explored. In this
paper, we study the memory system of GPUs in a con-
currently executing multi-application environment. We first
present an analytical performance model for many-threaded
architectures and show that the common use of misses-per-
kilo-instruction (MPKI) as a proxy for performance is not
accurate without considering the bandwidth usage of ap-
plications. We characterize the memory interference of ap-
plications and discuss the limitations of existing memory
schedulers in mitigating this interference. We extend the
analytical model to multiple applications and identify the
key metrics to control various performance metrics. We
conduct extensive simulations using an enhanced version of
GPGPU-Sim targeted for concurrently executing multiple
applications, and show that memory scheduling decisions
based on MPKI and bandwidth information are more effec-
tive in enhancing throughput compared to the traditional
FR-FCFS and the recently proposed RR FR-FCFS policies.

CCS Concepts
•Computer systems organization → Single instruc-
tion, multiple data;

Keywords
GPGPUs; Memory System; Analytical Modeling

∗The work was done while being at Pennsylvania State Uni-
versity, University Park, PA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MEMSYS ’15, October 05-08, 2015, Washington DC, DC, USA
c© 2015 ACM. ISBN 978-1-4503-3604-8/15/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2818950.2818979

1. INTRODUCTION
Graphics Processing Units (GPUs) are becoming an in-

evitable part of heterogeneous computing systems because
of their ability to accelerate applications consisting of abun-
dant data-level parallelism. The computing trajectory of
GPUs has evolved from traditional graphics rendering to ac-
celerating general purpose and high performance computing
applications, and of late to cloud and virtual desktop com-
puting. Two trends have driven this trajectory. First, GPU
resources are rapidly growing with each technology genera-
tion [2, 4, 6] to provide the workhorse for efficient computa-
tion. Second, advances in software and virtualization tech-
nology for GPUs such as NVIDIA GRID [3], and OpenStack
IaaS framework have made the transition possible.

GPU virtualization is required for concurrent access to the
GPU resources by multiple applications, potentially origi-
nating from different users. This can be facilitated by spatial
as well as temporal allocation of GPU resources. The cur-
rent NVIDIA GRID [3] and other cloud providers support
virtualization by time multiplexing. Spatial resource sharing
has yet to evolve because unlike CPUs, traditionally, GPUs
were designed to execute only a single application at a time.
However, it has been shown recently that only executing a
single application at a time may not effectively utilize the
available computing resources in state-of-the-art GPUs [38],
thereby making a compelling case for multi-application exe-
cution [24,38]. Thus, supporting multi-application execution
is essential both from performance and utility (adoption in
cloud environments) perspectives.

Unlike CPU-based architectures, where resource alloca-
tion and scheduling for multiple application execution has
been studied extensively, only a few recent papers [5, 7, 8,
19, 24, 38, 48] have scratched the issues related to multiple
application execution in the context of GPUs. Among them
only a few works [24] have addressed the problem of multi-
application interference in the GPU memory system. There-
fore, many of the design issues are still little understood. In
this paper, we focus on the interactions of multiple applica-
tions in GPU memory system, and specifically attempt to
answer the following questions: (i) How do we characterize
the interactions between multiple applications in the GPU
memory system? (ii) What are the limitations of traditional
application-agnostic FR-FCFS [40,41,50] and RR FR-FCFS
scheduling [24] in the context of throughput oriented GPU
platforms?, (iii) Is it possible to push the performance en-

L2
MC

L2
MC

L2
MC

L2
MC

App N

On Chip Network

SM SM

L1 L1

SM SM

L1 L1

App N-1App 2

SM SM

L1 L1

SM SM

L1 L1

App 1

Figure 1: Overview of our baseline architecture capable of
executing multiple applications.

velope further with an efficient scheduling mechanism?, and
(iv) How do we explore the design space and develop analyti-
cal performance models to find appropriate knobs for guiding
the scheduling decisions? In this context, this paper makes
the following contributions:
• Contrary to the common use of misses-per-kilo-instruction
(MPKI) as a metric for gauging the memory intensity, and as
a proxy for application performance, we show that a model
based on both MPKI and the achieved DRAM bandwidth
information is able to gauge the memory intensity and esti-
mate the performance of GPU applications more accurately.
• We perform a detailed analysis of application characteris-
tics and interactions among multiple applications in GPUs
to classify applications and understand the scheduling de-
sign space based on this classification.
•We develop a simple analytical model to demonstrate that
L2-MPKI and bandwidth utilization can be used as two
control knobs to optimize performance metrics: instruction
throughput (IT) and weighted speedup (WS), respectively.
Based on this analytical model, we develop two memory
scheduling schemes, ITS and WEIS, which are customized
to improve IT and WS, respectively. We show that the pro-
posed solutions are still effective with different core parti-
tioning configurations and scalable for running up to three
applications concurrently.
• We qualitatively and quantitatively compare our schemes
with the traditional FR-FCFS and the recently proposed
round-robin RR FR-FCFS [24] schedulers. Across 25 repre-
sentative workloads, ITS improves IT by 34% and 8% over
FR-FCFS and RR FR-FCFS, respectively; and WEIS im-
proves WS by 10% and 5% over FR-FCFS and RR FR-
FCFS, respectively.
•We believe this is the first paper that conducts an in-depth
evaluation on GPU memory systems in multi-application en-
vironment. In this context, we have developed a GPU Con-
current Application suite (GCA) and a simulation frame-
work capable of executing multiple CUDA applications.
This framework is developed by extending the open-source
cycle accurate GPU simulator – GPGPU-Sim [10].

2. BACKGROUND

2.1 Baseline Architecture
In this paper, we consider a generic NVIDIA-like GPU as

our baseline, where multiple cores, also called as streaming
multi-processors (SMs)1, are connected to multiple memory
controllers (MCs) via an on-chip network as shown in Fig-
ure 1. Each MC is a part of the memory partition that also
contains a slice of L2 cache for faster data access. The details
of our baseline configuration are shown later in Table 2.

1In this work, we use“core”and“SM”terms interchangeably.

Single Application Scheduling: CUDA uses computa-
tional kernels to take advantage of parallel regions in the
application. Each application may include multiple kernels.
GPUs execute all kernels of an application sequentially, i.e.
one kernel at a time. Each kernel is organized as blocks
of cooperative thread arrays (CTAs) that are executed in a
parallel fashion on the whole GPU. During kernel launch,
the CTA scheduler initiates scheduling of the CTAs related
to that kernel, and tries to distribute them evenly [10].
Multiple Application Scheduling: In this paper, we si-
multaneously execute kernels from different applications.
We use a kernel-to-SMs allocation scheme where we dis-
tribute SMs evenly in a spatial manner based on the number
of applications as shown in Figure 1. For example, if our
GPU consists of 30 SMs that need to be partitioned among
two applications, we assign the first 15 SMs to the first appli-
cation, and the rest of the SMs to the second application. As
the focus of this work is memory (not caches), unless other-
wise specified, we equally partition SMs and L2 cache across
concurrently executing applications. We use equal L2 way-
partitioning across concurrent applications. We also eval-
uate our schemes with two different SM-partitioning tech-
niques (i.e. 10-20 and 20-10) to demonstrate the robustness
of our model with respect to core partitioning in Section 8.4.
Memory Scheduling: In this work, we assume first-ready
FCFS (FR-FCFS) [40,41,50] as our baseline memory sched-
uler. This scheme is targeted at improving DRAM row-
buffer hit rates, so request prioritization order is: 1) row-
buffer hit requests are prioritized over other requests; then
2) older requests are prioritized over younger ones.

2.2 Evaluation Metrics and Application Suite
When multiple applications execute concurrently, instruc-

tion throughput (IT) measures the raw machine throughput

and is given by IT =
∑N
i=1 IPCi, where there are N co-

running applications, and IPCi is the number of committed
instructions per cycle of the ith application. Note that this
metric only considers IPC throughput, without taking fair-
ness into account. In this work, we focus on this metric to
evaluate pure machine performance of GPUs without con-
sidering the fairness aspect.

For evaluating system throughput, we use Weighted
speedup (WS), which indicates how many jobs are executed

per unit time: WS =
∑N
i=1 SDi, where SDi is the slow-

down of ith application given by SDi = IPCi

IPCalone
i

, where

IPCalonei is IPC of ith application when running alone. As-
suming there is no constructive interference among applica-
tions, the maximum value of WS is equal to the number of
applications.

We also show the impact of our schemes on Harmonic
Speedup (HS) that not only measures system performance,
but also has a notion of fairness [31] and is given by, HS =

1/(
∑N
i=1

1
SDi

). The Average Normalized Turn-around Time

(ANTT) metric is the reciprocal of HS.
Application Suite: For experimental evaluations, we
use a wide range of GPGPU applications implemented in
CUDA. These applications are chosen from Rodinia [12],
Parboil [44], CUDA SDK [10], and SHOC [13], and are listed
in Table 1. In total we study 25 applications.

3. PERFORMANCE
CHARACTERIZATION OF MANY-
THREADED ARCHITECTURES

In this section, we revisit a performance model for many-
threaded architectures proposed by Guz et al. [20], and clas-
sify our applications based on this model.

3.1 A Model for Many-threaded
Architectures

Recent works have shown that bandwidth is usually
the critical bottleneck in many-threaded architectures like
GPUs [26,28,47]. The considered model [20] shows that per-
formance of many-threaded architectures is directly propor-
tional to the bandwidth that the application receives from
DRAM (attained DRAM bandwidth). In this model, appli-
cation performance is expressed as,

P =
BW

breg × rm × Lmiss
(1)

where
P = performance [Operations/second (Ops)]
BW = attained DRAM bandwidth [Bytes/second (Bps)]
rm = the ratio of the number of memory instructions to

the number of total instructions
breg = the operand size [Bytes]
Lmiss= cache miss rate

This generic model assumes a single memory space, a
single-level cache and DRAM. As a result, the miss rate is
used for quantifying DRAM accesses. In addition, it ignores
the case of multiple memory spaces and the case of scratch-
pad usage; e.g. the case where scratch-pad can provide an
additional source of bandwidth. Operand size represents the
amount of data fetched to/from DRAM on each cache miss,
which is equal to the cache line size.

In this model, as the numerator in (1) is BW , performance
is directly proportional to the bandwidth attained by the
application. We express the denominator as,

breg × rm × Lmiss = breg × imem
itot

× cmiss
ctot

= breg ×
cmiss
itot︸ ︷︷ ︸
MPI

× imem
ctot︸ ︷︷ ︸
1

= breg ×MPI︸ ︷︷ ︸
Bytes required to transfer from DRAM

for commiting an instruction

(2)
where
imem = the number of memory instructions
itot = the number of total instructions
cmiss = the number of cache misses
ctot = the number of cache accesses
MPI= the number of cache misses per instruction

Thus, from (1) and (2), we note that performance is di-
rectly proportional to the achieved DRAM bandwidth, and
is inversely proportional to the size of datum that needs to be
fetched to/from DRAM in order to commit an instruction.
Since we consider a system with two levels of cache with
a constant cache-line size, the overall performance becomes
inversely proportional to the number of L2 misses that need
to be served for committing one thousand instructions (L2
misses per kilo-instruction (L2MPKI)), as given in (3). In
the rest of the paper, we use the term MPKI to represent
L2MPKI.

P ∝ BW

MPKI
(3)

0

0.25

0.5

0.75

1

G
U

P
S

M
U

M

Q
T

C

B
F

S
2

N
W

L
U

H

R
E

D

S
C

A
N

S
C

P

C
F

D

F
W

T

B
L

K

S
R

A
D

L
IB

J
P

E
G

3
D

S

C
O

N
S

H
IS

T
O

M
M

B
P

H
S

S
A

D

N
N

R
A

Y

T
R

D

N
o

rm
a
li
z
e
d

 I
P

C
 Simulator Model

Figure 2: Application performance obtained via simulation
and our model. IPC is normalized with respect to the max-
imum achievable IPC supported by our architecture.

0%

20%

40%

60%

80%

100%

B
F

S
2

N
W

L
U

H

R
E

D

S
C

A
N

S
C

P

C
F

D

F
W

T

B
L

K

S
R

A
D

L
IB

J
P

E
G

3
D

S

C
O

N
S

H
IS

T
O

M
M

B
P

H
S

S
A

D

N
N

R
A

Y

T
R

D

M
A

R
EA
b

s
o

lu
te

 R
e

la
ti

v
e

 E
rr

o
r

Figure 3: Absolute relative error between IPCs obtained
from real hardware (NVIDIA Kepler K20m GPU) and our
model.

We validate this model by simulating applications from Ta-
ble 1 using GPGPU-Sim simulator. Figure 2 shows the ob-
served IPC from the simulator and the calculated IPC val-
ues by using Equation (3) and simulated BW and MPKI
values. For all 25 applications, the mean absolute relative
error (MARE) is 10.3%. We observe that for many (21 out
of 25) applications, the MARE is only 4.2%. However, for
other 4 applications: MM, HS, BP, and SAD, MARE is higher
(42.1%), because these applications make extensive use of
the software-managed scratchpad memory. As a result, their
performance is not only dependent on the achieved DRAM
bandwidth, but is also driven by the additional scratchpad
bandwidth, which is not captured in our model. For cases
that involve usage of a scratch-pad memory, our model un-
derestimates the actual IPC obtained by the application.
We conducted a similar analysis on real GPU hardware2,
and Figure 3 shows the absolute relative error for each ap-
plication. We omit the results for GUPS, MUM and QTC, because
we could not execute them faithfully on real hardware. For
22 applications, we observe MARE to be 9.5%.

3.2 Application Characterization
Several previous works (e.g., [14, 30, 31, 33, 39]) have 1)

characterized the memory intensity of applications primarily
based on their last-level cache MPKI values, and 2) used
MPKI as a proxy for performance. However, in this work,
we show that considering only MPKI is not enough for the
both cases in GPUs.

Table 1 summarizes MPKI and the ratio between at-
tained DRAM bandwidth and peak bandwidth (BW/C) for
our applications, where C is the peak memory bandwidth.
We list them in the descending order of their MPKI. First,
we show in Table 1 that only considering MPKI values is
not sufficient for estimating the memory intensity of a par-

2NVIDIA K20m GPU, CUDA capability 3.5, Driver 6.0

Table 1: Application characteristics: (A) MPKI: L2 cache
misses per kilo-instructions. (B) BW/C: The ratio of at-
tained bandwidth to the peak bandwidth of the system.

GPGPU Application Abbr. MPKI BW/C
(in %)

Random Access GUPS 57.1 93.0
MUMmerGPU [36] MUM 22.6 79.7

Quality Threshold Clustering [13] QTC 7.9 15.3
Breadth-First Search [36] BFS2 5.3 11.6
Needleman-Wunsch [12] NW 5.1 16.7

Lulesh [27] LUH 4.7 35.6
Reduction [13] RED 2.8 68.8
Exclusive [13]

Parallel Prefix Sum
SCAN 2.7 45.0

Scalar Product [36] SCP 2.7 86.3
Fluid Dynamics [12] CFD 2.3 27.2

Fast Walsh Transform [36] FWT 2.2 45.1
BlackScholes BLK 1.6 67.6

Speckle Reducing Anisotropic
Diffusion [12]

SRAD 1.6 36.4

LIBOR Monte Carlo [36] LIB 1.1 25.4
JPEG Decoding JPEG 1.1 29.8

3D Stencil 3DS 1.0 42.3
Convolution Separable [36] CONS 1.0 43.5

2D Histogram [44] HISTO 0.6 18.8
Matrix Multiplication [44] MM 0.5 5.1

Backpropogation [12] BP 0.4 16.5
Hotspot [12] HS 0.4 6.1

Sum of Absolute Differences [44] SAD 0.1 5.6
Neural Networks [36] NN 0.1 0.3

Ray Tracing [36] RAY 0.1 1.8
Stream Triad [13] TRD 0.1 1.4

ticular application. It is evident that high MPKI levels
may not necessarily lead to a very high DRAM bandwidth
utilization, as it is also a function of the inherent compute
to bandwidth ratio of a particular application. For example,
although QTC has the third highest MPKI among our ap-
plications, there are 15 other applications in our suite that
have higher DRAM bandwidth utilization than QTC.

Second, as we showed in Section 3.1, performance is not
only dependent on MPKI, but also BW . For the applica-
tions shown in Table 1, the correlation between MPKI and
IPC is only -44.4%. While MPKI is the number of misses
that needs to be served to commit 1000 instructions, it lacks
the information about the rate at which these misses are
served by DRAM. In other words, L2-MPKI is a good mea-
sure of the bandwidth demand of the application, but per-
formance is a function of both the demanded and the achieved
bandwidth.

4. ANALYZING MEMORY SYSTEM
INTERFERENCE

In this section, we build a foundation and draw key ob-
servations towards designing a more efficient, application-
aware memory scheduler for GPUs. We start with present-
ing the nature of interference among concurrent applications
in GPU memory system, then we discuss the inefficiencies of
existing memory schedulers, and finally we draw initial in-
sights for designing a better memory scheduling technique.

4.1 The Problem: Application Interference
When multiple applications are co-scheduled on the same

GPU hardware, they interfere at various levels of the mem-
ory hierarchy, such as interconnect, caches and memory. As
memory system is the critical bottleneck for a large num-

0

0.5

1

1.5

2

BLK_GUPS BLK_QTC BLK_NNW
e

ig
h

te
d

 S
p

e
e

d
u

p

SD-App-1 SD-App-2

(a) Effect on Weighted
Speedup.

0

0.25

0.5

0.75

1

BLK_GUPS BLK_QTC BLK_NN

N
o

rm
al

iz
e

d
 IT

(b) Effect on Instruction
Throughput.

Figure 4: Different performance slowdowns obtained when
BLK is co-scheduled with three different applications: GUPS,
QTC, and NN. Memory scheduling policy is FR-FCFS.

ber of GPU applications, explicitly addressing contention
issues in the memory system is essential. We find that an
uncoordinated allocation of GPU resources, especially mem-
ory system resources, can lead to significant performance
degradations both in terms of IT and WS. To demonstrate
this, consider Figure 4, which shows the impact on WS and
IT , when BLK is co-scheduled with three different applica-
tions (GUPS, QTC, NN). The workloads formed are denoted by
BLK_GUPS, BLK_QTC and BLK_NN, respectively. Let us first
consider the impact on WS in Figure 4a, where we also
show the breakdown of WS in terms of slowdowns (SD)
experienced by individual applications. The slowdowns of
the applications in the workload are denoted by SD-App-1
and SD-App-2 for the first and the second applications, re-
spectively. Note that when the applications do not interfere
with each other, both SD-App-1 and SD-App-2 are equal to
1, leading to a weighted speedup of 2. This figure demon-
strates three different memory interference scenarios: (1) in
BLK_GUPS, both applications slow down each other signifi-
cantly, (2) in BLK_QTC, slowdowns of BLK and QTC are very
different – slowdown of QTC being much higher than that of
BLK, and (3) in BLK_NN, slowdown in both applications is neg-
ligible. In these different scenarios, the degradation in WS
is also very different. We observe significant degradation in
WS in the first (90%) and second (54%) cases, whereas, it
is negligible (2%) in the third case.

Figure 4b shows IT degradation when BLK is co-scheduled
with the same three applications vs. the case where BLK

and other application in the workload are executed sequen-
tially. We observe similar interference trends in BLK_GUPS

and BLK_NN, where in the former case, we observe signifi-
cant degradation in IT , while the latter exhibits negligible
degradation. Interestingly, the IT degradation in BLK_QTC

is not as significant as compared to its WS degradation.
From this discussion, we conclude that concurrently execut-
ing applications are not only susceptible to significant levels
of destructive interference in memory, but also the degree
with which they impact each other can be strongly dependent
on the considered performance metric.
Analysis: As shown in Section 3, performance of a GPU ap-
plication is a function of both BW and MPKI. As we seek
insights on the impact of each metric on performance, let us
first discuss the memory bandwidth component. For exam-
ple, since both BLK and GUPS have very high bandwidth de-
mands (Table 1), when they are co-scheduled, performance
of both applications degrade significantly. We observe ex-
actly the same behaviour in Figure 4a, where both appli-
cations do not receive their bandwidth shares for achiev-
ing stand-alone performance levels. Similarly, the available
DRAM bandwidth is not sufficient for the BLK_QTC case,

and BLK hurts QTC performance quite significantly by get-
ting most of the available bandwidth. In the third case with
BLK_NN, the bandwidth is sufficient for both applications, re-
sulting in negligible performance slowdowns for both. This
infers the fact that limited DRAM bandwidth is one of the
important reasons of application interference and different
application slowdowns.

However, considering only BW of each application would
not explain why BLK_QTC experiences only a slight degrada-
tion in IT . We also need to consider the second parameter
that affects performance, MPKI, whose values are listed
in Table 1. In our example, there is significant difference
in MPKI of BLK and QTC (BLK MPKI < QTC MPKI).
From (3), we know that the application with low BW and
high MPKI will achieve lower performance levels than the
applications with high BW and low MPKI. Therefore, in
BLK_QTC, BLK contributes much more towards higher IT than
QTC. As BLK does not slow down significantly (Figure 4a), the
total IT reduction is low. This discussion confirms that both
BW and MPKI are key parameters for better understand-
ing of the performance characteristics and scheduling consid-
erations for concurrently executing applications in GPUs.

4.2 Limitations of Existing Memory
Schedulers

In this section, we discuss the limitations of three memory
schedulers. We consider the baseline FR-FCFS [40, 41, 50]
scheduler that targets improving DRAM row hit rates, and
prioritizes row-buffer hit requests over any other request. In
addition, we explore two other schemes a) Prior App sched-
uler that statically prioritizes requests of only one of the co-
scheduled applications, and b) the recently proposed round-
robin (RR) FR-FCFS GPU memory scheduler [24] that gives
equal priority to all concurrently executed applications in
the system in addition to preserving overall row-buffer hit
rates. None of these schedulers sacrifice locality, but instead
of picking memory requests in FCFS order after servicing
row-hit requests (as done in FR-FCFS), Prior Appi always
prefers memory request from ith application, and RR FR-
FCFS arbitrates between applications in the round-robin or-
der. Figure 5 shows the effect of these three memory sched-
ulers on weighted speedup and instruction throughput for
two of the workloads already shown in Figure 4a (BLK_QTC
and BLK_NN), and an additional workload HISTO_TRD.
Limitations of FR-FCFS: When multiple applications
are co-scheduled, FR-FCFS still optimizes for row-hit lo-
cality and does not consider the individual application
properties while making scheduling decisions. Because of
such application-unawareness, FCFS nature of the scheduler
would allow a high memory demanding application to get a
larger bandwidth share, as that application would introduce
more requests in memory controller queue. Therefore, as
shown in Figure 5, in BLK_QTC, we observe that BLK gets
higher bandwidth share, causing large slowdowns in QTC.
Moreover, Figure 5 demonstrates that the best performing
scheduling strategy for improving either of the the perfor-
mance metrics is prioritizing one of the applications through-
out the entire execution.
Limitations of Prior App i: We observe in HISTO_TRD

that prioritizing TRD over HISTO provides the best IT and
WS among all the considered scheduling strategies. How-
ever, in BLK_QTC, prioritizing one application over another
does not improve both the performance metrics. In BLK_NN,

0

0.5

1

1.5

2

FR
-F

C
FS

P
ri

o
r_

A
p

p
1

P
ri

o
r_

A
p

p
2

R
o

u
n

d
-R

o
b

in

FR
-F

C
FS

P
ri

o
r_

A
p

p
1

P
ri

o
r_

A
p

p
2

R
o

u
n

d
-R

o
b

in

FR
-F

C
FS

P
ri

o
r_

A
p

p
1

P
ri

o
r_

A
p

p
2

R
o

u
n

d
-R

o
b

in

HISTO_TRD BLK_QTC BLK_NN

W
e

ig
h

te
d

 S
p

e
e

d
u

p

SD-App-1 SD-App-2

(a) Effect on Weighted Speedup.

0

0.25

0.5

0.75

1

HISTO_TRD BLK_QTC BLK_NN

N
o

rm
al

iz
e

d
 IT

FRFCFS Prior_App1 Prior_App2 Round-Robin

(b) Effect on Instruction Throughput

Figure 5: Different performance slowdowns experienced
when different memory scheduling schemes are employed.

since both the applications attain their uncontested band-
width demands, prioritizing one over another does not im-
pact performance. Even though prioritizing one application
over another provides the best result, the challenge is to de-
termine which application to prioritize. One way of doing
so is to profile the workload and employ a static priority
mechanism throughout the execution. However, such strat-
egy is often hard to realize. Another mechanism can be
to switch priorities between applications during run-time,
which is similar to RR FR-FCFS [24].
Limitations of RR FR-FCFS: As discussed above, in or-
der to optimize WS and IT in BLK_QTC, we should prioritize
different applications. Since RR switches priorities between
these two applications, it attempts to achieve a balance be-
tween improving both metrics. However, in HISTO_TRD, al-
though employing RR mechanism leads to a slightly better
IT and WS over FR-FCFS, it is far from the case where we
prioritize TRD.

Based on the above discussion, we make two key obser-
vations that guide us in developing an application-conscious
scheduling strategy.
Observation 1: Prioritizing lower MPKI applications
improves IT : In the workloads where we observe signifi-
cant slowdowns in either of the applications, prioritizing the
application with lower MPKI improves IT . For example,
in HISTO_TRD, TRD has lower MPKI than HISTO and there-
fore, Prior App 2 yields better IT . Similarly, in BLK_QTC,
BLK has lower MPKI than QTC, thus Prior App 1 provides
better IT .
Observation 2: Prioritizing lower BW applications
improves WS: In the workloads where we observe signif-
icant slowdowns in either of the applications, prioritizing
the application with lower BW improves WS. For example,
in HISTO_TRD, TRD has lower BW than HISTO and therefore
Prior App 2 yields better WS. Similarly, in BLK_QTC, QTC
has lower BW than BLK, thus Prior App 2 provides better
WS.

5. A PERFORMANCE MODEL FOR
CONCURRENTLY EXECUTING
APPLICATIONS

In order to provide a theoretical background for the ob-
servations we discussed for optimizing IT and WS in Sec-
tion 4.2, we extend the model discussed in Section 3 to two
applications, and analyze the effect of concurrent execution
on the performance metrics when memory bandwidth is the
system bottleneck. We also show how this model guides us
in developing different memory scheduling algorithms tar-
geted for optimizing each metric separately, and explain our
findings based on our model by examples.

The notations we use in our model are given below:
P alonei = alone performance of application i
BW alone

i = alone bandwidth attained by application i
Pi = performance of application i
BWi = bandwidth attained by application i
C = peak bandwidth of the system
ε = infinitesimal bandwidth given to an application
MPKIi = MPKI of application i

When applications run alone, they cannot attain more
bandwidth than that is available in the system, thus
BW alone

i ≤ C ∀i; and similarly for concurrent execution,
the cumulative bandwidth consumption cannot exceed the
peak bandwidth, thus

∑N
i=1BWi ≤ C. Also, we have

Pi, BWi,MPKIi ≥ 0 ∀i.

Let us analyze the case when two applications are exe-
cuted concurrently3. Assuming that performance is limited
by the memory bandwidth, an application cannot consume
more bandwidth without getting more share from the other
application’s bandwidth. Thus, in a two-application sce-
nario, BW1 +BW2 = C, assuming no wastage of bandwidth
is incurred.

We assume that, at time t = t0, we have Pi ∝ BWi
MPKIi

∀i; and at t = t1 where t1 > t0, we give an additional
ε bandwidth to the first application by taking it from the
other. Thus, at t = t1, we have P ′1 ∝ BW1+ε

MPKI1
, and P ′2 ∝

BW2−ε
MPKI2

, where P ′i is the performance of application i at t =
t1.

5.1 Analyzing Instruction Throughput
In order to have higher IT at t = t1 compared to t = t0,

P ′1 + P ′2 > P1 + P2 (4)

BW1 + ε

MPKI1
+
BW2 − ε
MPKI2

>
BW1

MPKI1
+

BW2

MPKI2
(5)

Simplifying (5) yields,

ε(MPKI2 −MPKI1) > 0 (6)

=⇒ MPKI2 > MPKI1, if ε > 0 (7)

MPKI1 > MPKI2, if ε < 0 (8)

From (7) and (8), we find that we should prioritize the
application with lower MPKI in order to optimize IT .

Illustrative Example: Figure 6 shows an example of the
optimal scheduling strategy for maximizing IT . In this ex-
ample, we consider three different scheduling strategies: 1)

3Our model can be easily extended to analyze more than
two applications. We show the scalability of our model for
three applications in Section 8.4.

prioritizing the first application, 2) prioritizing the second
application, and 3) the RR scheduler. When these appli-
cations run alone, based on their BW and MPKI values,
we can say that the first and the second applications achieve
performances of 1.5 (1) and 8 units (2), respectively, based
on (3). If these applications are co-scheduled on the GPU,
and if we prioritize the first application throughout the exe-
cution, that application will get 30 units of bandwidth, since
it demands 30 units when it runs alone. We assume that
MPKI does not change significantly during different exe-
cutions, as we do not do any cache-related optimization in
this work for preserving simplicity. Because the first ap-
plication’s MPKI is 20, its performance will be 1.5 units
(3). The remaining 20 units of bandwidth will be used by
the second application, as the peak bandwidth is 50 units
(C = 50). Because its MPKI is 5, its performance will
be 4 units (4). Similarly, if we prioritize the second appli-
cation, it will get 40 units of bandwidth as it demands 40
units when running alone, and the first application will use
the remaining 10 units. Thus, the performances of the first
and the second applications will be 0.5 (5) and 8 units (6),
respectively. Also, if we employ the round-robin scheduler,
assuming both applications have similar row-buffer locali-
ties, they get the same share from the available bandwidth,
which is 25 units, leading to 1.25 (7) and 5 (8) units of per-
formance for the first and the second applications, respec-
tively. Based on these individual application performance
values calculated using our model, we show that IT (the
sum of individual IPCs) of this workload is 5.5 (9), 8.5
(10), and 6.25 units (11), when we prioritize the first ap-
plication, prioritize the second application, and employ RR
scheduler, respectively. These results are consistent with our
model, which suggests that prioritizing the application that
has lower MPKI would provide the best IT . Intuitively,
as per (3), the same BW provided for the application with
lower MPKI, which is the second application in this exam-
ple, translates to higher IPC. Thus, prioritizing the applica-
tion with lower MPKI provides higher IT for the system.

We observe in Figure 5b that prioritizing the application
with lower MPKI results in higher IT for HISTO_TRD and
BLK_QTC. Since the application interference in BLK_NN is not
significant, it does not benefit from prioritization.

5.2 Analyzing Weighted Speedup
In order to have higher WS at t = t1 compared to t = t0,

P ′1
P alone1

+
P ′2

P alone2

>
P1

P alone1

+
P2

P alone2

(9)

BW1+ε
MPKI1

BWalone
1

MPKI1

+

BW2−ε
MPKI2

BWalone
2

MPKI2

>

BW1
MPKI1

BWalone
1

MPKI1

+

BW2
MPKI2

BWalone
2

MPKI2

(10)

Simplifying (10) yields,
ε(BW alone

2 −BW alone
1) > 0 (11)

=⇒ BW alone
2 > BW alone

1 , if ε > 0 (12)

BW alone
1 > BW alone

2 , if ε < 0 (13)

From (12) and (13), we find that we should prioritize
the application with lower BW alone to optimize weighted
speedup.

Illustrative Example: We continue the example shown in
Figure 6 with the optimal scheduling strategy for maximiz-
ing WS. We obtain WS = 1.5 (12), 1.33 (13), and 1.45

𝟑𝟎

𝟐𝟎
= 𝟏. 𝟓𝟐𝟎

𝟓

𝟑𝟎

𝟒𝟎

MPKI Alone BW

App 2

App 1

Alone Perf.

C = 50

Prior App 2

Prior App 1

Round-robin

𝐏𝟏 𝐏𝟐

𝟒 + 𝟏. 𝟓 = 𝟓. 𝟓

𝟎. 𝟓 + 𝟖 = 𝟖. 𝟓

𝐈𝐓 = 𝐏𝟏 + 𝐏𝟐

𝟏. 𝟐𝟓 + 𝟓 = 𝟔. 𝟐𝟓
2

1

3 4

5 6

7 8

9

10

11

13

14

12

𝟒𝟎

𝟓
= 𝟖

𝟑𝟎

𝟐𝟎
= 𝟏. 𝟓

𝟏𝟎

𝟐𝟎
= 𝟎. 𝟓

𝟐𝟓

𝟐𝟎
= 𝟏. 𝟐𝟓

𝟐𝟎

𝟓
= 𝟒

𝟐𝟓

𝟓
= 𝟓

𝟒𝟎

𝟓
= 𝟖

𝟏. 𝟓

𝟏. 𝟓
+
𝟒

𝟖
= 𝟏. 𝟓

𝟎. 𝟓

𝟏. 𝟓
+
𝟖

𝟖
= 𝟏. 𝟑𝟑

𝟏. 𝟐𝟓

𝟏. 𝟓
+
𝟓

𝟖
= 𝟏. 𝟒𝟓

𝐖𝐒 =
𝐏𝟏

𝟏. 𝟓
+
𝐏𝟐

𝟖

Figure 6: An illustrative example showing IT and WS for two applications running together. The shaded boxes represent
system and application properties. The peak memory bandwidth is 50 units. Application 1 and 2 use 30 and 40 units
bandwidth, respectively, when they execute alone. Their MPKIs are 20 and 5, respectively.

units (14) if we prioritize the first application, the second
application, and employ RR scheduler, respectively. As dis-
cussed above, prioritizing the second application provides
the best IT . However, we also observe that prioritizing
the application with the lowest BW alone, which is the first
application in this example, yields the best WS, which is
consistent with our model. Intuitively, the same amount of
bandwidth provided for the application with lower BW alone,
the first application in this example, translates to lower per-
formance degradation over its uncontested performance for
that application. Since WS is the sum of slowdowns, prior-
itizing the application with lower BW alone provides higher
WS for the system.

We observe in Figure 5a that prioritizing the application
with lower BW alone results in higher WS for HISTO_TRD and
BLK_QTC. BLK_NN is not a bandwidth limited workload, thus,
does not benefit from prioritization.

However, the problem with the approach that prioritizes
the application with lower BW alone is that, it is difficult to
obtain BW alone of an application without offline profiling,
as pointed out by Subramanian et al. [45]. They also pro-
pose an approximate method to obtain alone performance
of an application in a multiple-application environment dur-
ing run-time. However, doing so requires halting the exe-
cution of one of the applications to approximately calculate
the alone performance of the other application, which might
cause drop in WS. Also, it does not completely eliminate
the application interference. Furthermore, this sampling has
to be done frequently to capture execution phases with com-
pletely different behaviours. Thus, instead of approximating
P alonei or BW alone

i , we slightly change our WS optimization
condition, which leads to a solution that is much easier to
implement and employ during run-time. Our approximation
does not use alone performance of an application; instead,
compares P ′i with Pi. Mathematically, we have,

P ′1
P1

+
P ′2
P2

>
P1

P1
+
P2

P2
(14)

BW1 + ε

MPKI1

MPKI1
BW1

+
BW2 − ε
MPKI2

MPKI2
BW2

> 2 (15)

Simplifying (15) yields,
ε(BW2 −BW1) > 0 (16)

=⇒ BW2 > BW1, if ε > 0 (17)

BW1 > BW2, if ε < 0 (18)

From (17) and (18), we find that we can prioritize the appli-
cation with lower BW to improve relative weighted speedup.

We will later demonstrate in Section 8 that such approx-
imation leads to better weighted speedup. This is also
consistent with the observation made by Kim et al. [30] that
preferring application with the least attained bandwidth
can improve weighted speedup.

Discussion: We showed in Figure 6 that optimizing both
IT and WS using the same memory scheduling strategy
might not be possible. We also showed a similar scenario
in Figure 5 where BLK_QTC prefers a different application to
be prioritized in order to achieve the best IT or WS. The
key reason behind this is the properties of the applications
that form the workload. In workloads, where the same ap-
plication has the lower MPKI and the lower BW alone, that
application can be prioritized to optimize both IT and WS.
However, in workloads, where one application has lower
MPKI but the other demands less bandwidth, then the
optimal scheduling strategy for improving our performance
metrics is different. In such scenarios, RR achieves a good
balance between IT and WS, because it gives equal prior-
ities to both applications (assuming both applications have
similar row-buffer localities). However, in scenarios where
prioritizing only one application is optimal for both IT and
WS, RR would be far from optimal in terms of performance.

6. MECHANISM AND
IMPLEMENTATION DETAILS

We provided two key observations in Section 4.2, and pre-
sented a theoretical background for them in Section 5. Based
on these observations, we propose two memory schedul-
ing schemes: a) Instruction Throughput Targeted Scheme
(ITS), and b) Weighted Speedup Targeted Scheme (WEIS).
1) Instruction Throughput Targeted Scheme (ITS):
This scheme aims to improve IT based on our observation
that the application having lower MPKI should be prior-
itized. In order to determine the application with lower
MPKI, we first periodically (every 1024 cycles4) calculate
two metrics during run-time: 1) the number of L2 misses for
each application locally at each memory partition, and 2)
the number of instructions committed by each application.
Then, the information regarding the committed instructions
is propagated to the MCs. We calculate MPKI of all the
applications locally at each MC, using an arithmetic unit.
Then, by using a comparator, we determine the application
with the lowest MPKI, and prioritize the memory requests
generated by that application in the MC.
2) Weighted Speedup Targeted Scheme (WEIS):
This scheme aims to improve WS based on our observation
that the application having lower BW should be prioritized.
In order to determine the application with lower BW , we
periodically calculate the amount of data transferred over
the DRAM bus for each application locally at each memory
partition. Then, by using a comparator, we determine the

4We also used three other sampling size windows (256, 1024,
2048) cycles. The difference in overall average performance
is less than 1%, implying that sampling window size does
not have a significant impact on our design.

application with the lowest BW , and prioritize the memory
requests generated by that application in the MC.
Implementation of the Priority Mechanism: Our pri-
ority mechanism takes advantage of the already existing FR-
FCFS memory scheduler implementation. However, after
serving the requests that generate DRAM row buffer hits,
instead of picking request in the FCFS order, we pick the
oldest request from the highest priority application. When
there is no request from the highest priority application in
the MC queue, we pick the oldest request originating from
the application with the next highest priority.

7. INFRASTRUCTURE AND
EVALUATION METHODOLOGY

Infrastructure: Most of the prior GPU research (e.g. [9,
11, 23, 25, 26, 28, 29, 46]) is focused on improving the perfor-
mance of a single GPU application, and is evaluated based
on the benchmarks originating from different application
suites (Section 3.2). However, to investigate the research
issues in the context of multiple applications, these appli-
cations need to be concurrently executed on the same GPU
platform. This is a non-trivial task because it involves build-
ing a framework that can launch existing CUDA applica-
tions in parallel without significant changes to the source
code. In order to do so, we develop a new framework, called
GPU concurrent application framework (GCA). This frame-
work takes advantage of CUDA streams. A stream is de-
fined as a series of memory operations and kernel launches
that are required to execute sequentially, however, different
streams can be executed in parallel. Our GCA framework
creates a separate stream for each application, and issues
all its associated commands to the stream. As many of the
legacy CUDA codes use synchronous (e.g., cudaMemcpy())
memory transfer operations, our framework does source code
modifications to change them to asynchronous CUDA API
calls (e.g., cudaMemcpyAsync()). To ensure correct execu-
tion of multiple streams, our framework also adds appro-
priate synchronization constructs (e.g., cudaStreamSynchro-
nize()) to the source code at correct places. After these
steps are performed, GCA is ready to execute multiple
streams/applications either on real GPU hardware or on the
simulator. In this paper, we use GCA to concurrently exe-
cute workloads on GPGPU-Sim, which is already capable of
concurrently running multiple CUDA streams.
Evaluation Methodology: We simulate both two- and
three-application workloads on GPGPU-Sim [10], a cycle-
accurate GPU simulator. Table 2 provides the details of
simulation configuration. GCA framework launches CUDA
applications on GPGPU-Sim and executes until the point
where all the applications complete at least once. To achieve
this, GCA framework relaunches the faster running applica-
tion(s) until the slowest application completes its execution.
We collect the statistics of individual applications when they
finish their respective executions such that amount of work
done by individual applications across different runs is con-
sistent. We only simulate application kernels, and do not
have a performance simulation for the data transfer between
CPU and GPU.
Workload Classification: We evaluate 100 two-
application workloads and classify them based on two
criteria. The first classification is based on the MPKI
difference between the applications in the workload. If

NW_SCP

BLK_MUM

QTC_SCP

BLK_LUH

NW_SCP

BLK_MUM

QTC_SCP

BLK_LUH

NW_SCP

BLK_MUM

QTC_SCP

BLK_LUH

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-25 -20 -15 -10 -5 0 5 10B
a
n

d
w

id
th

 U
ti

li
z
a

ti
o

n
 (

B
W

/C
)

D
if

fe
re

n
c
e

s
 i

n
 A

p
p

li
c

a
ti

o
n

s

L2-MPKI Differences in Applications

FR-FCFS RR ITS

A
B

C

Figure 7: The effect of FR-FCFS, RR, and ITS on BW1 −
BW2 and MPKI1 −MPKI2.

this difference is greater than 10, the workload belongs to
Class-A-MPKI. If it is less than 1, the workload belongs to
Class-C-MPKI, otherwise it belongs to Class-B-MPKI. The
second classification is based on the BW/C (bandwidth-
utilization) difference between the applications in the
workload. If this difference is greater than 50%, the
workload belongs to Class-A-BW. If it is less than 25%,
the workload belongs to Class-C-BW, otherwise it belongs
to Class-B-BW. The intuition behind this classification
method is that the workloads with high MPKI and high
BW difference are more likely to benefit from ITS and
WEIS, respectively.

8. EXPERIMENTAL RESULTS
In this section, we evaluate six memory scheduling mech-

anisms: 1) the baseline FR-FCFS, 2) the recently proposed
RR FR-FCFS [24], 3) ITS, 4) WEIS, 5) a static mech-
anism that always prioritizes the lowest MPKI applica-
tion in the workload, Prior App (Low MPKI) (denoted as
Prior App Low MPKI in the text), and 6) a static mecha-
nism that always prioritizes the application in the workload
with the lowest BW alone, Prior App (Low BW) (denoted
as Prior App Low BW in the text). Note that the above
static mechanisms require offline profiling that are difficult
to employ during run-time. We use these static schemes as
comparison points for ITS and WEIS, respectively. We use
equal core partitioning across SMs for the applications in a
workload, and show sensitivity to different core partition-
ing schemes in Section 8.4. We use geometric mean (GM)
to report average performance results. For each proposed
scheme, we first demonstrate how effective the algorithm is
in modulating the bandwidth given to each application, and
then we show the performance results.

8.1 Evaluation of ITS
How ITS Works: Figure 7 shows the effect of FR-FCFS,
RR FR-FCFS, and ITS on four representative workloads.
The x-axis shows MPKI1 −MPKI2, and the y-axis shows
BW1 −BW2.

In BLK_MUM which is shown in A , since MUM has higher
MPKI than BLK, and BLK attains higher BW than MUM,
all the points inside A are in the second quadrant. ITS
prioritizes BLK due to its relatively lower MPKI, thus, the
difference between BW attained by BLK and MUM increases
with respect to FR-FCFS. We observe an interesting case in
RR. Since BLK already attains higher bandwidth with FR-
FCFS, we would expect MUM to find more opportunity to
utilize DRAM with RR. However, the RR mechanism em-
ployed by Jog et al. [24] preserves row-locality while schedul-

Table 2: Key configuration parameters of the simulated GPU configuration. See GPGPU-Sim v3.2.1 [18] for full list.

Core Features 1400MHz core clock, 30 cores (streaming multi-processors), SIMT width = 32 (16 × 2),
Greedy-then-oldest first (GTO) dual warp scheduler [37]

Resources / Core [18,42,43] 16KB shared memory, 16KB register file, Max. 1536 threads (48 warps, 32 threads/warp)
Private Caches / Core [18,42,43] 16KB 4-way L1 data cache

12KB 24-way texture cache, 8KB 2-way constant cache, 2KB 4-way I-cache, 128B cache block size
Shared L2 Cache 16-way 128 KB/memory channel (768KB in total), 128B cache block size
Features Memory coalescing and inter-warp merging enabled,

immediate post dominator based branch divergence handling
Memory Model 6 GDDR5 Memory Controllers (MCs), FR-FCFS scheduling (256 max. requests/MC),

8 DRAM-banks/MC, 4 bank-groups/MC, 924 MHz memory clock, 88.8GB/sec peak memory bandwidth
Global linear address space is interleaved among partitions in chunks of 256 bytes [17]
Reads and writes are handled with equal priority [10,18]
Hynix GDDR5 Timing [21], tCL = 12, tRP = 12, tRC = 40,
tRAS = 28, tCCD = 2, tRCD = 12, tRRD = 6, tCDLR = 5, tWR = 12

Interconnect [18] 1 crossbar/direction (30 cores, 6 MCs), 1400MHz interconnect clock, islip VC and switch allocators

0.8

1

1.2

1.4

1.6

1.8

3
D

S
_

G
U

P
S

B
L

K
_

M
U

M

B
P

_
G

U
P

S

F
W

T
_

G
U

P
S

G
U

P
S

_
R

E
D

H
S

_
G

U
P

S

J
P

E
G

_
G

U
P

S

L
IB

_
G

U
P

S

M
M

_
G

U
P

S

M
U

M
_

3
D

S

M
U

M
_

F
W

T

M
U

M
_

G
U

P
S

M
U

M
_

J
P

E
G

M
U

M
_

S
C

P

S
C

A
N

_
G

U
P

S

S
C

A
N

_
M

U
M

S
C

P
_

G
U

P
S

3
D

S
_

R
E

D

B
L

K
_
L

U
H

B
L

K
_

R
E

D

B
L

K
_

S
C

A
N

L
U

H
_

S
C

P

N
W

_
S

C
P

Q
T

C
_

S
C

P

B
L

K
_

C
F

D

O
v

e
ra

ll

C
la

s
s

_
A

_
M

P
K

I

C
la

s
s

_
B

_
M

P
K

I

C
la

s
s

_
C

_
M

P
K

I

Class_A_MPKI Class_B_MPKI Geomean

N
o

rm
a
li

z
e

d
 I

n
s

tr
u

c
ti

o
n

T

h
ro

u
g

h
p

u
t

RR WEIS ITS Prior App (Low MPKI)

Class

_C

_MPKI

Figure 8: IT results normalized with respect to FR-FCFS for 25 representative workloads.

ing requests. Therefore, this mechanism, although expected
to give equal share of bandwidth to both applications, pro-
vides more opportunity to the application with higher row-
locality for scheduling its requests. In other words, RR pro-
vides the applications with an equal opportunity to activate
rows, resulting in the application with higher row-locality to
schedule more requests due to their differences between the
number of requests served per active row-buffer. The exact
phenomenon is observed in A with RR, where BLK has 4×
higher row-locality than that of MUM, leading to RR giving
BLK even higher opportunity to schedule its requests com-
pared to FR-FCFS. However, ITS unilaterally prefers BLK

due to its consistently lower MPKI.
In BLK_LUH, which is shown in B , we observe very similar

trends as in A . However, as opposed to A , RR reduces
the gap between BW achieved by LUH and BLK, since both
applications have similar row-localities. In NW_SCP which is
shown in C , since NW has higher MPKI than SCP, and SCP

attains higher bandwidth than NW, all the points inside C

are in the fourth quadrant. ITS prioritizes SCP due to its
relatively lower MPKI, thus, SCP achieves even more BW
compared to FR-FCFS. We observe almost the same behav-
ior with QTC_SCP as well. Note that, MPKI values of the
applications in the workload do not change across schemes,
as it is an application property and each application has its
own L2 cache partition.
ITS Performance: Figure 8 shows the instruction
throughput of RR, WEIS, ITS, and Prior App Low MPKI
normalized with respect to FR-FCFS, using 25 represen-
tative workloads that span across MPKI-based workload
classes, chosen from our pool of 100 workloads. We also show
the average IT of these workloads including the individual
GM for each workload class. As expected, in BLK_MUM previ-
ously shown in A (Figure 7), IT improves by 15% with RR,
and by 30% with ITS. We observe that, employing WEIS
provides improvements over FR-FCFS, but results in slightly
lower average performance than RR. It is expected, because

WEIS is not targeted to optimize IT . With ITS, we observe
34% and 8% average IT improvements over FR-FCFS and
RR, respectively, across 25 workloads. These numbers are
49% and 7% for Class-A-MPKI applications, because the
workloads that have applications with strikingly different
MPKIs are more likely to benefit with ITS over FR-FCFS.
Class-B-MPKI and Class-C-MPKI also gain moderate per-
formance improvements, by 7% and 12% over FR-FCFS,
respectively. As we have shown in Figure 7, MPKI does
not change significantly. Thus, dynamism of ITS does not
provide extra IT benefits over Prior App Low MPKI.

8.2 Evaluation of WEIS
How WEIS Works: Figure 9 shows the effect of FR-FCFS,
RR, and ITS on five representative workloads. The x-axis
shows BW1−BW2, and the y-axis shows the normalized WS
improvement over FR-FCFS. WEIS attempts to reduce the
difference between BW attained by the applications, and
therefore in the figure, we expect WEIS to push the work-
loads towards the y-axis. Also, as it is expected to improve
WS, it also pushes the workload upwards. In NW_FWT which
is shown in D , BW of FWT is higher than NW. WEIS prefers
NW as it attained lower BW , which pushes this workloads
upwards and towards y-axis. The RR mechanism degrades
WS for NW_FWT because of similar reasons related to row-
locality as pointed earlier (FWT has 13× higher row-locality
than NW).

In BLK_3DS (E) and BLK_MM (F) both RR and WEIS push
the workload towards y-axis along with improving WS. We
observe that the trends in both RR and WEIS are similar
in 3DS_RED and NW_FWT, and also in BLK_NW and BLK_3DS.
WEIS Performance: Figure 10 shows WS of RR, WEIS,
ITS, and Prior App Low BW normalized with respect to
FR-FCFS, using 25 representative workloads that span
across BW-based workload classes, chosen from our pool
of 100 workloads. We also show the average WS of these
workloads including the individual GM for each workload

0.8

0.9

1

1.1

1.2

1.3

1.4

B
L

K
_

H
S

B
L

K
_

M
M

B
L

K
_

N
W

B
L

K
_

Q
T

C

H
IS

T
O

_
G

U
P

S

H
S

_
G

U
P

S

M
M

_
G

U
P

S

M
U

M
_

H
S

M
U

M
_

M
M

N
W

_
G

U
P

S

N
W

_
R

E
D

Q
T

C
_

G
U

P
S

B
L

K
_

S
R

A
D

N
W

_
F

W
T

Q
T

C
_

F
W

T

S
C

A
N

_
N

W

S
C

A
N

_
Q

T
C

B
L

K
_

3
D

S

L
U

H
_

T
R

D

Q
T

C
_

T
R

D

T
R

D
_

N
W

L
U

H
_

R
E

D

M
U

M
_

R
E

D

3
D

S
_

R
E

D

M
U

M
_

F
W

T

O
v

e
ra

ll

C
la

s
s

_
A

_
B

W

C
la

s
s

_
B

_
B

W

C
la

s
s

_
C

_
B

W

Class_A_BW Class_B_BW Class_C_BW Geomean

N
o

rm
a
li
z
e
d

 W
e
ig

h
te

d

S
p

e
e
d

u
p

RR ITS WEIS Prior App (Low BW)

Figure 10: WS results normalized with respect to FR-FCFS for 25 representative workloads.

BLK_MM
BLK_NW

NW_FWT

BLK_3DS
3DS_RED

BLK_MM

BLK_NW

NW_FWT

BLK_3DS

3DS_RED

BLK_MM

BLK_NW

NW_FWT

BLK_3DS

3DS_RED

-10%

-5%

0%

5%

10%

15%

20%

-0.4 -0.2 0 0.2 0.4 0.6 0.8

P
e
rf

o
rm

a
n

c
e

 I
m

p
ro

v
e

m
e

n
t

O
v
e

r
F

R
-F

C
F

S

Bandwidth Utilization (BW/C) Difference between Applications

FR-FCFS RR WEIS

E

F

D

Figure 9: Effect of FR-FCFS, RR, and WEIS on WS and
BW1 −BW2.

0.9

1

1.1

1.2

1.3

1.4

Class A Class B Class C Overall

N
o

rm
a

li
z
e

d
 I
n

s
tr

u
c

ti
o

n

T
h

ro
u

g
h

p
u

t

RR WEIS ITS Prior App (Low MPKI)

(a) Normalized IT.

0.9

0.95

1

1.05

1.1

Class A Class B Class C Overall

N
o

rm
a

li
z
e

d

W
e

ig
h

te
d

 S
p

e
e

d
u

p
 RR ITS WEIS Prior App (Low BW)

(b) Normalized WS.

Figure 11: Summary IT and WS results for 100 workloads,
normalized with respect to FR-FCFS.

class. We observe that, employing ITS provides improve-
ments over FR-FCFS, but results in lower average perfor-
mance than RR. This is expected, because ITS is not tar-
geted to optimize WS. With WEIS, we observe 10% and
5% average WS improvements over FR-FCFS and RR, re-
spectively, across 25 workloads. These numbers are 14%
and 3% for Class-A-BW applications, because the work-
loads that have applications with strikingly different BW
are more likely to benefit with WEIS, compared to FR-
FCFS. Class-B-BW and Class-C-BW also gain performance
improvements, by 5% and 8% over FR-FCFS, respectively.
In Class-C-BW workloads, WEIS performs much better than
Prior App Low BW. This is because the average BW dif-
ference is not significant, and it is more likely that the same
application does not achieve consistently lower bandwidth
than the other application. Therefore, prioritizing an appli-
cation unilaterally like Prior App Low BW does may lead
to sub-optimal performance.

8.3 Performance Summary
We evaluate ITS and WEIS for 100 workloads and

we observe in Figure 11 that our conclusions from pre-
vious discussions hold true for a wide range of work-
loads. In Figure 12, we report Harmonic Speedup
(HS) for 100 workloads in order to gauge WEIS with
a balanced metric for performance as well as fair-
ness [31]. Across all classes of workloads, we consis-

tently observe better HS compared of FR-FCFS and RR.

0.8

0.9

1

1.1

1.2

Class A Class B Class C

BW Classes Overall

N
o

rm
a
li

z
e
d

H

a
rm

o
n

ic
 S

p
e
e
d

u
p RR WEIS

Figure 12: HS results
for 100 workloads nor-
malized with respect to
FR-FCFS.

On average, RR and WEIS
achieve 4% and 8% higher HS
over FR-FCFS.

8.4 Scalability Analysis
Application Scalability: We
evaluate ITS and WEIS in the
scenario when three applications
are executed concurrently. We
observe that the impact of our
schemes is even higher, as there

is significant increase in memory interference among three
applications. Figure 14 shows normalized IT and WS im-
provements with ITS and WEIS, respectively for 10 work-
loads. We observe significant IT improvement (27%) in
GUPS_SCP_HISTO, as ITS prefers HISTO because of its signif-
icantly lower MPKI than other applications in the work-
load. For WEIS, we also observe similar trends as discussed
before.
Core Partitioning: We evaluate three core partitioning
configurations: (10,20), (20,10), and the baseline (15,15).
Figure 13 shows normalized IT improvements of ITS for
JPEG_GUPS, over FR-FCFS when it is used in their re-
spective configurations. We observe in all three config-
urations that the improvements in JPEG_GUPS are signifi-
cant. However, if fewer cores (ITS (20,10)) are assigned
to GUPS, which is a very high memory demanding appli-
cation, the negative interference effect on JPEG is reduced.

0.8

1

1.2

1.4

1.6

1.8

JPEG_GUPS

N
o

rm
a

li
z
e

d
 I

T ITS (10,20)

ITS (15,15)

ITS (20,10)

Figure 13: Core parti-
tioning results.

Therefore, the relative IT im-
provements in ITS (20,10) is
lower than ITS (15, 15). In
the case of ITS (10, 20), the
alone IPC of JPEG is lower as
JPEG is assigned to fewer cores.
This leads to lower scope in JPEG

IPC improvements compared to
the baseline ITS (15, 15) case.
These results indicate that al-

though core partitioning mechanisms affect the magnitude
of interference, the problem still remains significant. We
leave orchestrated memory and core resource partitioning
schemes as a part of future work.

9. RELATED WORK
To the best of our knowledge, this is the first work that

analyzes the interactions of multiple applications in GPU
memory system, via both experiments as well as a mathe-
matical model.
GPU and SoC Memory Scheduling: Prior work on
memory scheduling for GPUs has dealt with a single appli-

0.9

1

1.1

1.2

1.3
N

o
rm

a
li

z
e
d

 I
n

s
tr

u
c
ti

o
n

T

h
ro

u
g

h
p

u
t

(a) Evaluation of ITS.

0.95

1

1.05

1.1

N
o

rm
a
li

z
e
d

 W
e
ig

h
te

d

S
p

e
e
d

u
p

(b) Evaluation of WEIS.

Figure 14: Evaluation of ITS and WEIS when three GPU
applications are concurrently executed.

cation context only. Yuan et al. [49] proposed an arbitration
mechanism in NoC to restore the lost row-buffer locality to
enable a simple in-order DRAM memory scheduler. Laksh-
minarayana et al. [32] explored a DRAM scheduling policy
that essentially chooses between Shortest Job First (SJF)
and FR-FCFS [41, 50]. Chatterjee et al. [11] proposed a
warp-aware memory scheduling mechanism that reduces the
DRAM latency divergence in a warp by avoiding the inter-
leaved servicing of memory requests from different warps.
The benefits from the above schedulers are orthogonal to
our schemes and some of these mechanisms can be adapted
as secondary arbitration criteria between requests for the
currently prioritized application in our scheduler. In the
SoC space, Jeong et al. [22] proposed allowing the GPU to
consume only the required bandwidth to maintain a certain
real-time QoS-level for graphics applications. Ausavarung-
nirun et al. [9] proposed a memory scheduling technique for
CPU-GPU architectures. However, the overriding motiva-
tions for such prior work is to obtain the lowest possible
latency for CPU requests without degrading the bandwidth
utilization of the channel.
CPU Memory Schedulers: The impact of memory
scheduling on multicore CPU systems has been a topic of sig-
nificant interest in recent years [1,16,30,31,34,35]. Ebrahimi
et al. [15] proposed parallel application memory scheduling,
where they explicitly managed inter-thread memory interfer-
ence for improving performance. The Thread Cluster Mem-
ory Scheduler (TCM) [31] is particularly relevant because
not only did it advocate prioritizing latency-sensitive ap-
plications, it identified that the main source of unfairness
is the interference between different bandwidth intensive
applications. To improve performance and fairness, TCM
ranks the bandwidth-intensive threads based on their rela-
tive bank-level parallelism and row-buffer locality, and peri-
odically shuffles the priority of the threads. The TCM tech-
nique is an advancement over the ATLAS [30], PARBS [35],
and STFM [34] mechanisms that do not distinguish between
bandwidth-intensive threads while improving performance
and fairness.

We share the same objectives as the CPU schedulers like
TCM, but the motivations and considerations behind our
proposed schedulers, as well as the implementation and de-
rived insight are significantly different. First, prior CPU
memory schedulers concentrated only on single-threaded
or modestly multi-threaded/multi-programmed workloads,
while we demonstrate the benefits of our schemes for mul-
tiple, massively-threaded applications running on a funda-
mentally different architecture (SIMT). Second, the analysis
in Sec. 3 establishes a different set of metrics from TCM,
viz. MPKI and attained bandwidth, to guide the mem-
ory scheduling at the application level (as opposed to single
threads as in TCM). This is partly due to the use of TLP

in GPU programs to hide memory latency as opposed to
ILP and MLP in CPUs. The final differentiator between
TCM and our mechanisms is complexity. TCM needs to
track each thread’s MLP, bank-level parallelism (BLP), and
row-buffer locality (RBL), and requires an expensive inser-
tion sort-like procedure to shuffle the ranks of high-MLP
applications. In contrast, we only require the L2 MPKI and
currently sustained bandwidth information for each appli-
cation, and a few simple comparisons in each time quanta.
Scaling TCM’s policies for the many thousands of concur-
rent threads in a GPU could be challenging in GDDR5 MC
that has to support multi-gigabit command issue rates.
Concurrent execution of multiple applications on
GPUs: Adriaens et al. [5] proposed spatial partitioning
of SM resources across concurrent applications. They pre-
sented a variety of heuristics for dividing the SM resources
across applications. Pai et al. [38] proposed elastic ker-
nels that allow a fine-grained control over their resource
usage. None of these works addressed the problem of con-
tention in the memory system. Moreover, we show that
memory interference problem remains significant regardless
of SM-partitioning mechanisms, and we believe our proposed
schemes are complementary to core resource partitioning
techniques. Gregg et al. [19] presented KernelMerge, a run-
time framework to understand and investigate concurrency
issues for OpenCL applications. Wang et al. [48] proposed
context funneling, which allows kernels from different pro-
grams to execute concurrently. Our work presents a new
GCA framework that consists of a large number of CUDA
workloads and also provides flexibility to add new CUDA
codes in the framework without much effort.

10. CONCLUSIONS
We present an in-depth analysis of GPU memory sys-

tem in a multiple-application domain. We show that co-
scheduled applications can significantly interfere in the GPU
memory system leading to significant loss in overall perfor-
mance. To address this problem, we developed an analytical
model that indicates that L2-MPKI and attained bandwidth
are the two knobs that can be used to drive memory schedul-
ing decisions for achieving better performance.

Acknowledgments
We thank the anonymous reviewers and group members of
HPCL and NVIDIA architecture research team for their
feedback. We also thank Sreepathi Pai for his inputs regard-
ing the simulation infrastructure. This research is supported
in part by NSF grants #1205618, #1213052, #1302225,
#1302557, #1317560, #1320478, #1409095, #1439021, and
#1439057.

References
[1] 3rd JILP Workshop on Computer Architecture

Competitions (Memory Scheduling Championship).
http://www.cs.utah.edu/˜rajeev/jwac12/.

[2] AMD Radeon R9 290X. http://www.amd.com/us/
press-releases/Pages/amd-radeon-r9-290x-2013oct24.aspx.

[3] NVIDIA GRID.
http://www.nvidia.com/object/grid-boards.html.

[4] NVIDIA GTX 780-Ti.
http://www.nvidia.com/gtx-700-graphics-cards/gtx-780ti/.

[5] J. Adriaens, K. Compton, N. S. Kim, and M. Schulte. The
case for GPGPU spatial multitasking. In HPCA, 2012.

[6] S. R. Agrawal, V. Pistol, J. Pang, J. Tran, D. Tarjan, and
A. R. Lebeck. Rhythm: Harnessing data parallel hardware
for server workloads. SIGARCH Comput. Archit. News.

[7] P. Aguilera, K. Morrow, and N. S. Kim. Fair share:
Allocation of GPU resources for both performance and
fairness. In ICCD, 2014.

[8] P. Aguilera, K. Morrow, and N. S. Kim. Qos-aware
dynamic resource allocation for spatial-multitasking gpus.
In ASP-DAC, 2014.

[9] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian,
G. H. Loh, and O. Mutlu. Staged Memory Scheduling:
Achieving High Prformance and Scalability in
Heterogeneous Systems. In ISCA, 2012.

[10] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt.
Analyzing CUDA Workloads Using a Detailed GPU
Simulator. In ISPASS, 2009.

[11] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and
R. Balasubramonian. Managing DRAM Latency
Divergence in Irregular GPGPU Applications. In SC, 2014.

[12] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H.
Lee, and K. Skadron. Rodinia: A Benchmark Suite for
Heterogeneous Computing. In IISWC, 2009.

[13] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.
Roth, K. Spafford, V. Tipparaju, and J. S. Vetter. The
scalable heterogeneous computing (shoc) benchmark suite.
In GPGPU, 2010.

[14] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das. Aérgia:
exploiting packet latency slack in on-chip networks. In
ACM SIGARCH Computer Architecture News. ACM, 2010.

[15] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A.
Joao, O. Mutlu, and Y. N. Patt. Parallel application
memory scheduling. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO-44 ’11, 2011.

[16] S. Ghose, H. Lee, and J. F. Mart́ınez. Improving memory
scheduling via processor-side load criticality information. In
ISCA, 2013.

[17] GPGPU-Sim v3.2.1. Address mapping.
[18] GPGPU-Sim v3.2.1. GTX 480 Configuration.
[19] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron.

Fine-grained resource sharing for concurrent GPGPU
kernels. In HotPar, 2012.

[20] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson,
and U. C. Weiser. Many-core vs. many-thread machines:
Stay away from the valley. IEEE Comput. Archit. Lett.

[21] Hynix. Hynix GDDR5 SGRAM Part H5GQ1H24AFR
Revision 1.0.

[22] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver. A
QoS-aware memory controller for dynamically balancing
GPU and CPU bandwidth use in an MPSoC. In
Proceedings of the 49th Annual Design Automation
Conference, pages 850–855. ACM, 2012.

[23] W. Jia, K. A. Shaw, and M. Martonosi. Characterizing and
Improving the Use of Demand-fetched Caches in GPUs. In
ICS, 2012.

[24] A. Jog, E. Bolotin, Z. Guz, M. Parker, S. W. Keckler,
M. T. Kandemir, and C. R. Das. Application-aware
Memory System for Fair and Efficient Execution of
Concurrent GPGPU Applications. In GPGPU, 2014.

[25] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir,
O. Mutlu, R. Iyer, and C. R. Das. Orchestrated Scheduling
and Prefetching for GPGPUs. In ISCA, 2013.

[26] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra,
M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das. OWL:
Cooperative Thread Array Aware Scheduling Techniques
for Improving GPGPU Performance. In ASPLOS, 2013.

[27] I. Karlin, A. Bhatele, J. Keasler, B. Chamberlain,
J. Cohen, Z. DeVito, R. Haque, D. Laney, E. Luke,
F. Wang, D. Richards, M. Schulz, and C. Still. Exploring
traditional and emerging parallel programming models
using a proxy application. In IPDPS, 2013.

[28] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das.

Neither More Nor Less: Optimizing Thread-level
Parallelism for GPGPUs. In PACT, 2013.

[29] O. Kayiran, N. C. Nachiappan, A. Jog,
R. Ausavarungnirun, M. T. Kandemir, G. H. Loh,

O. Mutlu, and C. R. Das. Managing GPU Concurrency in
Heterogeneous Architectures. In MICRO, 2014.

[30] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS:
A Scalable and High-performance Scheduling Algorithm for
Multiple Memory Controllers. In HPCA, 2010.

[31] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter.
Thread Cluster Memory Scheduling: Exploiting Differences
in Memory Access Behavior. In MICRO, 2010.

[32] N. B. Lakshminarayana, J. Lee, H. Kim, and J. Shin.
DRAM Scheduling Policy for GPGPU Architectures Based
on a Potential Function. Computer Architecture Letters,
2012.

[33] X. Lin and R. Balasubramonian. Refining the utility metric
for utility-based cache partitioning. Proc. WDDD, 2011.

[34] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory
Access Scheduling for Chip Multiprocessors. In MICRO,
2007.

[35] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch
Scheduling: Enhancing Both Performance and Fairness of
Shared DRAM Systems. In ISCA, 2008.

[36] NVIDIA. CUDA C/C++ SDK Code Samples, 2011.
[37] NVIDIA. Fermi: NVIDIA’s Next Generation CUDA

Compute Architecture, 2011.
[38] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan.

Improving GPGPU concurrency with elastic kernels. In
ASPLOS, 2013.

[39] M. K. Qureshi and Y. N. Patt. Utility-based cache
partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches. In Proceedings of the
39th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 2006.

[40] S. Rixner. Memory Controller Optimizations for Web
Servers. In MICRO, 2004.

[41] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens. Memory Access Scheduling. In ISCA, 2000.

[42] T. G. Rogers, M. O’Connor, and T. M. Aamodt.
Cache-Conscious Wavefront Scheduling. In MICRO, 2012.

[43] T. G. Rogers, M. O’Connor, and T. M. Aamodt.
Divergence-Aware Warp Scheduling. In MICRO, 2013.

[44] J. A. Stratton, C. Rodrigues, I. J. Sung, N. Obeid, L. W.
Chang, N. Anssari, G. D. Liu, and W. W. Hwu. Parboil: A
Revised Benchmark Suite for Scientific and Commercial
Throughput Computing. Technical Report IMPACT-12-01,
University of Illinois, at Urbana-Champaign, March 2012.

[45] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and
O. Mutlu. Mise: Providing performance predictability and
improving fairness in shared main memory systems. In
Proceedings of the 2013 IEEE 19th International
Symposium on High Performance Computer Architecture
(HPCA), HPCA ’13, 2013.

[46] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick,
O. Mutlu, C. Das, M. T. Kandemir, T. Mowry, and
R. Ausavarungnirun. Enabling Efficient Data Compression
in GPUs. In ISCA, 2015.

[47] K. Wang, X. Ding, R. Lee, S. Kato, and X. Zhang. GDM:
Device Memory Management for Gpgpu Computing. In
SIGMETRICS, 2014.

[48] L. Wang, M. Huang, and T. El-Ghazawi. Exploiting
concurrent kernel execution on graphic processing units. In
HPCS, 2011.

[49] G. Yuan, A. Bakhoda, and T. Aamodt. Complexity
Effective Memory Access Scheduling for Many-core
Accelerator Architectures. In MICRO, 2009.

[50] W. K. Zuravleff and T. Robinson. Controller for a
Synchronous DRAM that Maximizes Throughput by
Allowing Memory Requests and Commands to be Issued
Out of Order. (U.S. Patent Number 5,630,096), Sept. 1997.

