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Abstract—General-purpose graphics processing units (GPG-
PUs) are at their best in accelerating computation by exploiting
abundant thread-level parallelism (TLP) offered by many classes
of HPC applications. To facilitate such high TLP, emerging pro-
gramming models like CUDA and OpenCL allow programmers
to create work abstractions in terms of smaller work units, called
cooperative thread arrays (CTAs). CTAs are groups of threads
and can be executed in any order, thereby providing ample
opportunities for TLP. The state-of-the-art GPGPU schedulers
allocate maximum possible CTAs per-core (limited by available
on-chip resources) to enhance performance by exploiting TLP.

However, we demonstrate in this paper that executing the
maximum possible number of CTAs on a core is not always the
optimal choice from the performance perspective. High number
of concurrently executing threads might cause more memory
requests to be issued, and create contention in the caches, network
and memory, leading to long stalls at the cores. To reduce resource
contention, we propose a dynamic CTA scheduling mechanism,
called DYNCTA, which modulates the TLP by allocating optimal
number of CTAs, based on application characteristics. To min-
imize resource contention, DYNCTA allocates fewer CTAs for
applications suffering from high contention in the memory sub-
system, compared to applications demonstrating high throughput.
Simulation results on a 30-core GPGPU platform with 31 appli-
cations show that the proposed CTA scheduler provides 28%
average improvement in performance compared to the existing
CTA scheduler.
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I. INTRODUCTION

Interest in GPGPUs has recently garnered momentum
because they offer an excellent computing paradigm for many
classes of applications, specifically HPC applications with very
high thread-level parallelism (TLP) [8], [13], [22], [25], [26].
From the programmer’s perspective, evolution of CUDA [29]
and OpenCL [27] frameworks has made programming GPG-
PUs simpler. In the CUDA programming model, applications
are divided into work units called CUDA blocks (also called
as cooperative thread arrays – CTAs). A CTA is a group of
threads that can cooperate with each other by synchronizing
their execution. Essentially, a CTA encapsulates all synchro-
nization primitives associated with its threads. GPGPU ar-
chitecture provides synchronization guarantees within a CTA,
and no dependencies across CTAs, helping in relaxing CTA
execution order. This leads to an increase in parallelism and
more effective usage of cores. Current GPGPU schedulers
attempt to allocate the maximum number of CTAs per-core
(streaming multiprocessor [31]), based on the available on-chip
resources (register file size, shared memory size, and the total

number of SIMT units), to enhance performance by hiding the
latency of a thread while executing another one [29].

However, we demonstrate in this paper that exploiting the
maximum possible TLP may not necessarily be the best choice
for improving GPGPU performance, since this leads to high
amounts of inactive time at the cores. The primary reason
behind high core inactivity is high memory access latencies
primarily attributed to limited available memory bandwidth.
Ideally, one would expect that exploiting the maximum avail-
able TLP will hide long memory latencies, as the increased
number of concurrently running CTAs, in turn, threads, will
keep the cores busy, while some threads wait for their requests
to come back from memory. On the other hand, more threads
also cause the number of memory requests to escalate, ag-
gravating cache contention as well as network and memory
access latencies. To quantify this trade-off, Figure 1 shows
performance results of executing the optimal number of CTAs
per-core (in turn, optimal TLP) and the minimum number
of CTAs, which is 1. The optimal number of CTAs per-core
is obtained by exhaustive analysis, where each application is
simulated multiple times, with all the possible per-core CTA
limits. The results are normalized with respect to the default
CUDA approach where the maximum number of CTAs execute
on the cores. These results suggest that varying TLP at the
granularity of CTAs has a significant impact on the perfor-
mance of GPGPU applications. The average IPC improvement
across all 31 applications with optimal TLP over maximum
TLP is 39% (25% geometric mean). This number is very
significant in applications such as IIX (4.9×) and PVC (3.5×).

The optimal TLP might be different for each application,
and determining it would be impractical as it would require
executing the application for all possible levels of thread/CTA
parallelism. Motivated by this, we propose a method to find
the optimal TLP at the granularity of CTAs dynamically during
run-time. We believe that our work is the first to propose an
optimal CTA scheduling algorithm to improve performance
of GPGPUs. In this context, we propose a dynamic CTA
scheduling algorithm (DYNCTA) that modulates per-core TLP.
This is achieved by monitoring two metrics, which reflect the
memory intensiveness 1 of an application during execution,
and changing TLP dynamically at the granularity of CTAs de-
pending on the monitored metrics. DYNCTA favors (1) higher
TLP for compute-intensive applications to provide latency
tolerance, (2) lower TLP for memory-intensive applications to

1Our application suite is primarily divided into two categories: memory-
and compute-intensive applications. Details on the classification criteria is
described in Section III-A.
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Fig. 1: Impact of varying TLP on IPC. The first, and the second bars show the normalized speedup with respect to the CUDA default
(maximum TLP), when TLP is minimum (1 CTA on each core), and optimum (the optimal number of CTAs on each core), respectively.

reduce cache, network and memory contention. Evaluation on a
30-core GPGPU platform with 31 diverse applications indicate
that DYNCTA increases application performance (IPC) by
28% (up to 3.6×), on average, and gets close to the potential
improvements of 39% with optimal TLP.

II. BACKGROUND

Baseline GPGPU architecture: A GPGPU consists of many
simple in-order shader cores, with each core typically having
“single-instruction, multiple-threads” (SIMT) lanes of 8 to 32.
Our target GPGPU architecture, shown in Figure 2a, consists
of 30 shader cores each with 8 SIMT lanes, and 8 memory
controllers (MCs), similar to [9], [10], [33]. Each core has a
private L1 data cache, a read-only texture and a constant cache,
along with a low-latency shared memory. 10 clusters each of
which contain 3 cores are connected via a crossbar interconnect
to 8 MCs [9], [10], [33]. Each MC is associated with a slice
of shared L2 cache bank. An L2 cache bank with an MC is
defined as one “memory partition”. The baseline architecture
models memory coalescing in detail, where nearby memory
accesses are coalesced into a single cache line, reducing
the total number of memory requests. The baseline platform
configuration used in this work is given in Table I.

GPGPU application design: Figure 2b shows the hierarchy of
a GPGPU application consisting of threads, CTAs, and kernels.
A group of threads constitute a “CTA” or “thread block”. A
CTA is essentially a batch of threads that can coordinate among
each other by synchronizing their execution streams using
barrier instructions. Since all the synchronization primitives are
encapsulated in the CTA, execution of CTAs can be performed
in any order. This helps in maximizing the available parallelism
and any core is free to schedule any CTA. Further, each kernel
is associated with many CTAs, and one or multiple kernels
form a GPGPU application. A “warp” or a “wavefront” is the
granularity at which threads are scheduled to the pipeline, and
is a group of 32 threads. Note that a warp is an architectural
structure rather than a programming model concept.
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Fig. 2: Hardware and Software Architecture of GPGPUs

TABLE I: Baseline Configuration

Shader Core Config. [33] 30 Shader Cores, 1300MHz, 5-Stage Pipeline

(Fetch, Decode, Memory, Execute, WriteBack),

SIMT Width = 8

Resources / Core Max.1024 Threads, 32KB Shared Memory,

32684 Registers

Caches / Core 32KB 8-way L1 Data Cache, 8KB 4-way Texture,

8KB 4-way Constant Cache, 64B Line Size

L2 Unified Cache [36] 256 KB/Memory Partition, 64B Line Size,

16-way associative

Scheduling Round Robin Warp Scheduling (Among Ready

Warps), Load Balanced CTA Scheduling

Features Memory Coalescing, 64 MSHRs/core,

Immediate Post Dominator (Branch Divergence)

Interconnect [33] 1 Crossbar/Direction

(SIMT Core Concentration = 3),

650MHz, Dimension-Order Routing,

16B Channel Width, 4VCs, Buffers/VC = 4,

Routing Delay = 2,

Channel Latency = 2, Input Speedup = 2

DRAM Model [37] FR-FCFS (128 Request Queue Size/MC),

4B Bus width, 4 DRAM-banks/MC,

2KB page size, 4 Burst Size, 8 MCs

GDDR3 Timing [3], [9], [33] 800MHz, tCL =10, tRP =10, tRC =35,

tRAS =25, tRCD =12, tRRD =8,

tCDLR =6, tWR =11

Kernel, CTA, warp and thread scheduling: In GPGPUs,
scheduling is typically a three-step process. First, a kernel of
a GPGPU application is launched on the GPU. In our work, we
assume that only one kernel is active at a time. After launching
the kernel, the global block (CTA) scheduler (GigaThread
in [31]) assigns CTAs of the launched kernel to all the available
cores (We assume there are C cores in the system.) [3], [4].
The CTA assignment is done in a load-balanced round-robin
fashion [4]. For example, CTA 1 is launched on core 1, CTA
2 is launched on core 2, and so on. If there are enough CTAs,
each core is assigned with at least one CTA. Then, if a core
is capable of executing multiple CTAs, a second round of
assignment starts, if there are enough available CTAs. This
process continues until all CTAs have been assigned or all the
cores have been assigned with their maximum limit of CTAs.
Assuming there are enough CTAs to schedule, the number
of concurrently executing CTAs in the system is equal to
N × C. The maximum CTAs (N ) per-core is limited by core
resources (the total number of SIMT units, shared memory
and register file size [4], [18], [21]), and cannot exceed the
limit of 8 [29]. Given a baseline architecture, N may vary for
a kernel depending on how much resource is needed by the
CTAs of a particular kernel. For example, if a CTA of kernel
X needs minimum 8KB of shared memory and the baseline
architecture has 32KB available, only 4 CTAs of kernel X can
be launched simultaneously on the same core. After the CTA
assignment, the third step is the scheduling of warps associated
with the launched CTA(s) on a core. The warps are scheduled
in a round-robin fashion to the SIMT lanes. Every 4 cycles,
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Fig. 3: The average Active Time Ratio (RACT) of applications. RACT is defined as the average of ratio of cycles during which a core can
fetch new warps, to the total application execution cycles. The rightmost bar shows the arithmetic mean across all applications.

a ready warp (ready to fetch instruction(s)) is fed into these
lanes for execution. If the progress of a warp is blocked on a
long latency operation (e.g. waiting for data to come back from
memory), the entire warp is scheduled out of the pipeline and
put in the pending queue of warps. When the corresponding
data arrives, the warp proceeds to the write-back stage of the
pipeline and marked as ready to fetch new instructions.

Application suite: In this paper, we consider a wide range of
CUDA applications targeted to evaluate the general purpose
capabilities of GPUs. Our application suite includes CUDA
NVIDIA SDK [30] applications, and Rodinia [6] benchmarks,
which are mainly targeted for heterogeneous CPU-GPU-
accelerator platforms. We also study Parboil [34] benchmarks,
which mainly stress throughput-computing focused architec-
tures. To evaluate the impact of our schemes on large scale
and irregular applications, we also consider emerging MapRe-
duce [14] and a few third party GPGPU applications. In total,
we study 31 applications described in Table II. We evaluate our
techniques on GPGPU-Sim v2.1.2b [4], a publicly-available
cycle-accurate GPGPU simulator. We model the configuration
described in Table I in GPGPU-Sim. Each application is run
till completion or 1 billion instructions, whichever comes first.

III. DETAILED ANALYSIS OF TLP

A. Is More Thread-Level Parallelism Better?

Although maximizing the number of concurrently exe-
cuting CTAs on a core is an intuitive way to hide long
memory latencies, Figure 1 shows that the applications exhibit
sub-par performance with maximum TLP. For analyzing the
primary cause of performance bottlenecks, we study the core
active/inactive times for the benchmarks shown in Table II.
We define the core active time (Nact), and the core inactive
time (Ninact) as the number of cycles during which a core
is able to fetch new warps, and is unable to fetch new warps,
respectively. The average active time ratio (RACT ) is defined
as the average of Nact/(Nact+Ninact) across all cores.

Figure 3 shows the applications in their increasing order
of RACTs. We observe that, on average, cores are inactive
for 49% of the total execution cycles, and this goes up to
around 90% for memory-intensive applications (PVC, SSC,
IIX). It is important to stress that these high percentages
are observed even though the maximum possible number of
CTAs are concurrently executing on all cores. These results
portray a not-so-good picture of GPGPUs, which are known for
demonstrating high TLP and delivering high throughput [11],
[18], [19]. Inactivity at a core might happen mainly because of
three reasons. First, all the warps could be waiting for the data
from main memory and hence, their progress is road-blocked.

TABLE II: List of benchmarks: Type-C: Compute-intensive applica-
tions, Type-M: Memory-intensive applications, Type-X: Applications
not exhibiting enough parallelism.

# Suite Applications Abbr. Type

1 MapReduce Page View Count PVC Type-M

2 MapReduce Similarity Score SSC Type-M

3 MapReduce Inverted Index IIX Type-M

4 SDK Breadth First Search BFS Type-M

5 Parboil Sum of Abs. Differences SAD Type-M

6 Rodinia Particle Filter (Float) PFF Type-M

7 Rodinia LU Decomposition LUD Type-X

8 Parboil Sparse-Matrix-Mul. SPMV Type-M

9 Rodinia Needleman-Wunsch NW Type-X

10 SDK MUMerGPU MUM Type-M

11 Rodinia Kmeans KM Type-M

12 SDK Weather Prediction WP Type-M

13 SDK Scalar Product SCP Type-M

14 MapReduce Page View Rank PVR Type-M

15 SDK AES Cryptography AES Type-M

16 SDK LIBOR Monte Carlo LIB Type-M

17 SDK N-Queens Solver NQU Type-X

18 Parboil FFT Algorithm FFT Type-M

19 Rodinia SRAD2 SD2 Type-M

20 SDK Backpropogation BP Type-M

21 SDK JPEG Decoding JPEG Type-M

22 SDK Blackscholes BLK Type-C

23 SDK Ray Tracing RAY Type-C

24 Rodinia SRAD1 SD1 Type-C

25 Rodinia Leukocyte LKC Type-C

26 Rodinia Particle Filter (Native) PFN Type-C

27 Rodinia Hotspot HOT Type-C

28 SDK Neural Networks NN Type-C

29 Parboil Matrix Multiplication MM Type-C

30 SDK StoreGPU STO Type-C

31 SDK Coulombic Potential CP Type-C

We call this as “memory waiting time”. Second, pipeline may
be stalled because of excessive write-back (WB) contention at
the WB stage of the pipeline, which we call as “stall time”.
This may happen when the data associated with multiple warps
arrive in a short period of time and proceed to the WB stage.
This leads to the stalling of the pipeline for multiple cycles,
preventing new warps from being fetched. Third contributor
is the “idle time”, which is the number of cycles during
which the core cannot fetch any warps as all the warps in
the core have finished their execution. Synchronization stalls,
which are modeled in our studies, are also considered a part
of idle time. Through empirical analysis, we observe that the
first two components are the major contributors for the core
inactivity, whereas the third component constitutes more than
10% of the total execution cycles for only three applications.
As GPGPU memory bandwidth is limited and will continue
to be a bottleneck with increasing number of cores, the warps
will tend to wait longer periods of time for the requested data
to come back from DRAM and cause the pipeline to stall.
These inactive periods will continue to grow as more highly
memory-intensive applications are ported to GPGPUs.
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Fig. 4: The effect of increase in number of CTA on various metrics. Higher TLP increases latrt. Higher TLP causes util to go down on some
applications. latrt and util have significant impact on IPC.

To analyze the reason for inactivity, we start by classifying
the applications into three categories. First, applications with
significant idle time ratio (> 20%) are categorized as Type-X
applications. Type-X applications do not exhibit high level of
parallelism, utilize only a few cores, thus are not very suitable
for parallel computing. Among the remaining applications, the
ones with high RACT (> 66%) are categorized as compute-
intensive applications (Type-C), and the ones with low RACT
(≤ 66%) are classified as memory-intensive (Type-M) applica-
tions. We observe that, in many memory-intensive applications,
increasing the number of CTAs has detrimental impact on
performance. It is important to note that executing more CTAs
concurrently leads to more warps to timeshare the same set
of computing resources. Also, the number of memory requests
sent simultaneously escalates in proportion, thereby increasing
memory access latencies [24]. Moreover, this increase in TLP
stresses the limited DRAM bandwidth even more.

Let us now consider three GPGPU applications with varied
properties (AES, MM, JPEG) and observe their behavior as the
number of CTAs/core (parallelism) is increased (Figure 4).
Discussion of the fourth application (CP) in this figure is in
Section III-C. We mainly focus on IPC, round-trip fetch latency
(latrt), and core utilization (util) of the GPGPU system. latrt
is defined as the number of core clock cycles between which
a memory request leaves the core and comes back to the core.
util is defined as the average of utili for all i, where utili is the
ratio of cycles when at least one CTA is available on core i, to
the total execution cycles. Note that, in a GPGPU system with
C cores, the maximum number of CTAs that can concurrently
execute on the GPGPU is N ×C. In this experiment, we vary
the limit of the number of CTAs launched on a core, n, from
1 to N . In turn, we increase parallelism from C×1 to C×N ,
in steps of 1 CTA per core (C CTAs per GPGPU system). The
results for these three metrics are normalized with respect to
their values when N CTAs are launched on the core.

Figures 4a, 4b, and 4c show the effect of varying TLP (at
the granularity of CTAs) on IPC, latency, and core utilization,
respectively. For AES, the results are normalized to the case
where N = 4, as maximum 4 CTAs can execute concurrently
according to the resource restrictions. We observe that in AES,
increasing the number of concurrent CTAs from n = 1 to
n = N (N = 4) has detrimental impact on latrt (increases
by 9×). Since AES is classified as a Type-M application
(54% core inactive time), as the number of concurrent CTAs
increases, the number of memory requests escalates, causing
more contention in memory sub-system. We notice that n = 1
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Fig. 5: The effect of TLP on L1 data cache miss rate and network
latency. The first and the second bars show the normalized L1 data
cache miss rate and the normalized network latency when TLP is
minimum, respectively, with respect to the default CUDA approach.

(minimum CTA count per core, minimum TLP) leads to the
highest performance (lowest latrt and the highest util) for
this application. Thus, for AES, we define optimal CTA count
(opt) as 1. On the other hand, for MM, which is a Type-C
application, as we increase the number of CTAs from n = 1
to n = 8, IPC improves at each step, but less steeply after
n = 2. The total IPC improvement is around 34%. Since
this application is compute-intensive, varying TLP does not
have a significant impact on latrt. Note that the utilization
problem is not significant in this application and CTA load is
balanced across all cores. In MM, we have opt = 8. These
two applications demonstrate the impact of exploiting the
maximum and minimum TLP available. In comparison, JPEG
exhibits variances in IPC, latency and utilization as TLP is
increased. In this application, when parallelism is low (n = 1
and n = 2), the ability to hide the memory latency is limited,
resulting in lower performance compared to when TLP is
higher (n = 3). However, as the number of CTAs increases
beyond n = 3, the increase in TLP leads to an increase in
the memory access latency, leading to a loss in performance.
Hence, we define n = 3 as the optimal CTA count for JPEG.

B. Primary Sources of Contention

As discussed in Section III-A, we observe that memory
fetch latency can be affected by the level of parallelism.
We identify that the increase in memory latency is primarily
attributed to three reasons. First, the cache miss rates increase
with increasing TLP. High TLP causes the working data set to
be larger, which causes more cache blocks that are spatially
and temporally far from each other to be brought to cache [16].
This increases the cache contention and leads to higher miss
rates. Our simulation results show that, the average L1 data
cache miss rate of 31 applications is 62% when TLP is
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Fig. 6: The effect of TLP on core utilization. In (a), all 8 CTAs are
distributed to 2 cores initially. Core 1 finishes execution before Core
2 and we observe significant idle time for Core 1. In (b), only 4 CTAs
are distributed to 2 cores initially. Once a core finishes executing one
CTA, it is assigned with another one. Since only 2 CTAs share the
same core resources instead of 4, execution times of CTAs become
shorter compared to (a). In (b), we see better core utilization and
shorter execution time due to better CTA load balance. Note that this
example is for illustrative purposes only.

minimum (cores execute only 1 CTA at a time), and 72%
when TLP is maximum (default CUDA approach). Second,
increasing TLP causes network to be congested, and network
latencies of request and reply packets increase. The number
of warps that request data increase with higher TLP, causing
more network injections. Average network latency increases
by 2.1× when TLP is changed from its minimum value to
the CUDA default. Third, higher number of memory requests
leads to longer queuing delays at MCs. Average DRAM
queuing latency goes up by 7% when TLP is maximized. The
comparison of minimum and maximum TLP in terms of L1
cache and network performance is given in Figure 5.

C. Implications of Tuning TLP on Core Utilization

Next, we observe that varying the number of CTAs has also
an impact on the core utilization. This is mainly contributed
by the variation of execution times of different CTAs, causing
an imbalance on the execution times of cores [32]. One of the
potential reasons for this is the fact that having more CTAs
on cores might increase the time during which some cores are
idle towards the end of execution (once they finish executing
all the CTAs they have), while others are still executing some
CTAs. Although it is not always the case, increasing n tends to
worsen the utilization problem. Thus, this problem is mostly
evident on applications with high N . Figure 6 depicts an
example illustrating this problem. We assume that there are
2 cores executing 8 CTAs. The y-axis shows the number
of concurrently executing CTAs, and the x-axis shows the
execution time. This example shows the impact of TLP on
core utilization, and how it is related to execution time.

To understand the effect of core utilization on performance,
we pick CP, the most compute-intensive application in our
suite (99% RACT), and observe the impact of varying n.
Since CP is fetching a warp without spending much inactive
time, one would expect to see an increase in performance with
increasing n. The effect of varying TLP on IPC, latrt and
util is plotted in Figure 4. As we increase n, we see that
latrt also increases linearly. However, since latrt is low (32
cycles when n = 1), and the benchmark is highly compute-
intensive, increasing latrt does not have a negative impact
on performance. Except when n = 1 where memory latency
tolerance is limited due to low TLP, the trend of IPC always
follows the trend of util. As expected, util goes down as n

LH

H M L

C_mem

C_idle

Increment 

n

Decrement 

n

No change 

in n

Fig. 7: The overview of DYNCTA algorithm. If C idle is high, n
is incremented. Otherwise, if C mem is low, n is incremented; if it
is high, n is decremented. Otherwise n is not changed.

approaches N , and IPC drops due to unbalanced CTA load
distribution. util, hence IPC, reach their peaks when n = 3.

To summarize, we observe that, out of 31 applications
evaluated, 15 of them provided more than 5%, and 12 of
them yielded more than 10% (up to 4.9× for IIX) better
performance with optimal TLP, compared to the baseline.
Thus, increasing TLP beyond a certain point has a detrimental
effect on the memory system, and thus on IPC.

IV. PROPOSED CTA MODULATION

In this section, we describe our approach to determine the
optimal CTA number on a core dynamically, and discuss its
implications on performance. We apply our approach to each
core separately, and consequently, each core can work with a
different CTA count at a given time.

Problem with finding opt: One way of finding opt for an
application is to run it exhaustively for all possible n values,
and determine the one that gives the shortest execution time.
This could be a viable option only if we are running a few
predetermined applications all the time. Instead, we would like
our approach to be applicable under all circumstances. Thus,
we propose a scheme which changes the number of CTAs on
a core dynamically during the course of execution.

Idea for dynamic CTA modulation: When an application
exhibits a memory-intensive behavior during a phase, we limit
TLP by reducing the number of CTAs on the cores in order
to reduce the cache, network and memory contention. On
the other hand, when an application is compute-intensive, we
would like to exploit TLP by increasing the number of CTAs
in order to improve latency tolerance. Below, we describe our
approach to determine whether an application is memory or
compute-intensive during a phase.

Monitored metrics: In order to modulate n during run-time,
we monitor the following metrics: (1) C idle, and (2) C mem.
C idle is the number of core cycles during which the pipeline
is not stalled, but there are no threads to be issued on the
core, and thus this core is idle. A very high C idle value
indicates that the core does not have enough threads to keep
the pipeline busy, thus it might be beneficial to increase TLP.
C mem is the number of core cycles during which all the
warps are waiting for their data to come back. This metric
indicates how much pressure is being exerted on the memory.
A very high C mem indicates that the cores are waiting for
very long latency memory operations, thus it is better to limit
TLP. Statistics for these two metrics are collected separately
on each core, and a CTA modulation decision is made locally.

How the algorithm works: Instead of assigning N CTAs
to each core, the CTA scheduler starts with assigning ⌊N/2⌋
CTAs to each core (n = ⌊N/2⌋), and distributes the CTAs to
cores in a round-robin fashion. Therefore, even if there are less



than C×⌊N/2⌋ CTAs in the application kernel, the difference
between the number of CTAs on any two cores cannot be
greater than 1, where C denotes the total number of cores in
the system. After this initialization step, at each core, C mem
and C idle are checked periodically to make a decision, and
then reset to 0. For C idle, we use a threshold, t idle, that
categorizes the value as low, or high. For C mem, we use a
low threshold (t mem l), and a high threshold (t mem h) to
categorize the value as low, medium, or high.

Figure 7 shows how the number of CTAs is modulated.
The key idea behind the CTA modulation algorithm is to keep
the cores utilized, but not with too much work, so that the
performance does not suffer due to contention in the memory
sub-system. First, C idle is checked to monitor if the core is
utilized. If it is high (> t idle), a new CTA is assigned to
the core. The reason for this is to make an otherwise idle core
busy. Second, if C idle is low (< t idle), we check C mem
to optimize the workload on the core. If C mem is low, the
warps do not wait for a long time for their requests to come
back from the memory. Thus, we can increase the level of
parallelism and assign one more CTA to the core. If C mem
is high, then the warps are waiting for a long time for their
requests to come back from the memory. This implies that
latrt has grown too large to hide the memory latency, thus we
decrement n by 1. Otherwise, n remains the same. Note that
the decisions are made locally at each core. Once a decision is
made, C mem and C idle are reset to 0 to capture the behavior
of the next window. Note that 1 ≤ n ≤ N must always hold,
as long as there is a CTA that is available to be issued to the
core. We ensure that n ≥ 1 so that the cores are executing
threads, instead of staying idle. If there are no CTAs available
to be assigned to the core, then n ≤ N must hold. These
two conditions are always checked when making a decision
whether to increase or decrease n. If the resulting n after the
decision violates these conditions, then n is not changed.

CTA pausing: CUDA blocks (CTAs), once assigned to a core,
cannot be preempted, or assigned to another core [29]. This
presents a problem when the algorithm decrements n. In order
to address this problem, we propose a technique called CTA
pausing. This technique deprioritizes the warps belonging to
the most recently assigned CTA on the core, if n needs to
be decremented by 1. In this case, we say that the CTA
is paused. If n needs to be decremented further, the warps
belonging to the second most recently assigned CTA on the
core are also deprioritized. However, employing CTA pausing
has implications on incrementing n. If n is incremented during
a time in which a paused CTA is present on the core, a new
CTA is not issued to the core. Instead, the most recently paused
CTA resumes its execution. The pseudo-code of DYNCTA
with CTA pausing is given in Algorithm 1.

To explain the behavior of our algorithm with CTA pausing,
let us consider an example where N = 4 and n = 3 at a given
instant. Let us further assume that CTA1 is the oldest CTA
issued to the core, and CTA3 is the most recently assigned
CTA on the core. If the algorithm decrements n by 1, the
warps that belong to CTA3 are deprioritized. A warp of CTA3
can be fetched only if there is not a ready warp that belongs
to CTA1 or CTA2. Let us now assume that n is decremented
further. This time, CTA2 is deprioritized. If there are ready
warps that belong to CTA1, they will have the priority to be

fetched. If n is incremented by 1, CTA2 again gets the priority
to have its warps fetched. If n is incremented further, all warps
have the same priority. To summarize, a CTA is paused when
n is decremented. It can resume execution only when another
CTA finishes its execution, or n is incremented.

CTA pausing might not be effective when an application
phase is highly memory-intensive. If memory fetch latencies
are high, paused CTAs would eventually be executed before
higher-priority CTAs fetch their data and resume execution.

Comparison against opt: We observe that some applications
can have high and low RACT values at different time intervals.
For such applications, opt might be different for intervals
showing different behaviors, and our algorithm potentially
can outperform the case where n = opt. As discussed in
Section III, the level of parallelism mainly affects latrt and
util. The problem related to util manifests itself towards the
end of kernel execution, as illustrated in Figure 6. For this
reason, our algorithm aims to solve the problem caused by
latrt. Since the utilization problem is usually more pronounced
when n is large (Section III-C), and our algorithm limits
TLP by limiting n, we indirectly mitigate the effects of the
utilization problem as we limit n for some applications. For
some applications, opt is dependent on util, as explained in
Section III-C. Thus, our algorithm may not be able to match the
performance of the n = opt case. For example, in CP, which
is the most compute-intensive benchmark, we have opt = 3
and N = 8. The reason why opt is equal to 3 is explained
in Section III-C. Since CP is very compute-intensive, our
algorithm eventually sets n to 8, thus fails to converge to opt.
We believe that addressing utilization in order to more closely
approach optimal TLP requires predicting CTA execution
times on cores. This execution time prediction requires an
accurate performance model, which is not considered in this
work. Although there are cases where the algorithm fails to

Algorithm 1 DYNCTA: Dynamic Cooperative Thread Array
Scheduling

⊲ N is the maximum # of CTAs on a core

⊲ n is the CTA limit (running CTAs) on a core

⊲ nCTA is the total number of CTAs (paused and running CTAs) on a core

⊲ Issue CTAs To Core(n):Default CTA scheduler with CTA limit=n

procedure INITIALIZE

n← ⌊N/2⌋
ISSUE CTAS TO CORE(n)

procedure DYNCTA

for all cores do

INITIALIZE

for each sampling period do

for all cores do

if C idle ≥ t idle then

if nCTA > n then

Unpause least recently assigned CTA

else if n < N then

n← n + 1

else if (C mem < t mem l) then

if nCTA > n then

Unpause least recently assigned CTA

else if n < N then

n← n + 1

else if (C mem ≥ t mem h) then

if n > 1 then

n← n− 1

for i = 0→ (nCTA− n) do

Pause most recently assigned CTA



TABLE III: Variables and thresholds

Variable Description

Nact Active time, where cores can fetch new warps

Ninact Inactive time, where cores cannot fetch new warps

RACT Active time ratio, Nact/(Nact + Ninact)
C idle The number of core cycles during which the pipeline

is not stalled, but there are no threads to execute

C mem The number of core cycles during which all the warps

are waiting for their data to come back

t idle Threshold that determines whether

C idle is low or high

t mem l & t mem h Thresholds that determine if C mem is low,

medium or high

converge to opt (mostly for Type-C benchmarks which suffer
from low core utilization), the algorithm usually converges to
a value that is close to opt.

Parameters: Our algorithm depends on parameters such as
t idle, t mem l, and t mem h. We experimentally determined
the values of these parameters to be 16, 128, and 384, re-
spectively. These values are micro-architecture dependent, and
need to be recalculated for different configurations. Another
parameter is the sampling period (2048 cycles). Sensitivity
analysis on these parameters are reported in Section V-B. All
variables and thresholds are described in Table III.

Initial value of n: As described above, all cores are initialized
with ⌊N/2⌋ CTAs provided that there are enough CTAs. We
also tested our algorithm with initial n values of 1 and N .
Starting with n = 1 gave very similar results to starting with
⌊N/2⌋, and n converged to approximately the same value.
However, starting with N did not yield as good results as
starting with 1 or ⌊N/2⌋. This is a limitation of our algorithm,
since all possible CTAs are already distributed to the cores
initially. However, according to our observations, starting with
a small initial n does not make a significant difference as the
algorithm converges to the same value eventually.

Synchronization: We model atomic instructions and take into
account latency overheads due to inter-CTA synchronization.
We make sure that we do not deprioritize CTAs indefinitely
to prevent livelocks and starvation. Deprioritizing CTAs indef-
initely would improve the performance of the system further,
however such design requires a lock-aware mechanism. Also,
we have not observed performance losses due to CTA-pausing.

Hardware overhead: Each core needs two 11-bit counters
to store C mem, and C idle. The increment signals for each
counter come from the pipeline. The contents of these counters
are compared against three pre-defined threshold values, and
the outcome of our CTA modulation decision is communicated
to the global CTA scheduler. Since the cores and the scheduler
already communicate every clock cycle (e.g., as soon as a
core finishes the execution of a CTA, global scheduler issues
another CTA), there is no extra communication overhead
required. We implemented DYNCTA in RTL using Verilog
HDL, and synthesized the design using Synopsys Design
Compiler [35] on 65 nm TSMC libraries. We found that
DYNCTA occupies 0.0014 mm2 on each core.

V. EXPERIMENTAL RESULTS

We evaluate DYNCTA with 31 applications, using the
configuration described in Table I. We use the default CUDA
approach for determining the number of concurrent CTAs.

A. Performance Results with DYNCTA

We start by showing the dynamism of our algorithm in
allocating CTAs to the cores. For each application, we study
the maximum number of CTAs that can be allocated to the
cores, the optimal number of CTAs determined by exhaustive
analysis, and how our algorithm modulates the number of
CTAs. Figure 8 shows how the number of CTAs changes
during the execution for four applications. In SAD (N = 8), we
start with n = 4. Initially, due to high RACT, the average of
n across all cores goes up to 5, but then fluctuates around
4. For this application, we have opt = 4, and average of
n across cores is around 4.3. Note that we do not show
average n beyond the point where all the CTAs are issued
to the cores, since there is nothing to modulate. In JPEG

(N = 8), initial value of n is 4. Beyond the point where
RACT almost reaches 1, n slowly converges to 3, which is
equal to opt for this application. Since this application is fairly
compute-intensive in the middle of its execution, no CTAs
are paused. Thus, DYNCTA effectively optimizes TLP of this
application. In RAY, we have N = 6, and start with n = 3. The
application is initially not compute intensive, but most of the
inactivity happens due to write-back contention, not memory
waiting time. Thus, n is not decremented. After RACT goes
beyond 0.8, n follows the trend of RACT , and eventually
reaches N . Even though this is a Type-C application, opt
is not equal to N due to the core utilization problem (see
in Section III-C). Due to this, although DYNCTA correctly
captures the application behavior, n fails to converge to opt. In
FFT, we have N = 8 and therefore start with n = 4. Since this
application’s behavior changes very frequently, average n also
fluctuates. Overall, we observe that average n stays very close
to opt and DYNCTA is successful in capturing the application
behavior. A graph showing N , average n and opt for all
applications is given in Figure 9. We see that DYNCTA is
close to opt for most Type-M applications. Type-C applications
suffering from core utilization problem such as CP and RAY

fail to reach the optimal point. Type-X applications such as
NW and LUD do not have enough threads to be modulated,
so the algorithm fails to reach the optimal point and they do
not benefit from DYNCTA. Overall, average N is 5.38 and
average opt is 2.93. With DYNCTA, we get very close to opt,
obtaining an average of 2.69 CTAs across 31 applications.

Figure 10 shows the performance improvements obtained
by DYNCTA. Across 31 applications, we observe an average
speedup of 28% (18% geometric mean (GMN)). This result
is close to the improvements we can get if we use n = opt
for each application (39% mean, 25% GMN). Most Type-M
applications such as IIX (2.9×), PVC (3.6×), SAD (2.9×),
and KM (1.9×) benefit significantly from DYNCTA. Some
Type-M applications such as WP and LIB do not have any
room for improvement since the number of CTAs available on
the cores is not high enough for modulation. For example,
LIB has 64 CTAs. Although we have N = 8, the cores
cannot get more than 3 CTAs according to load balanced
CTA assignment in a 30-core system. PFF has N = 2, and
does not have much room for improvement since we can only
modulate between either 1 or 2 CTAs per core. We do not get
improvements from Type-X applications (NW, LUD, and NQU),
since they do not exhibit enough parallelism and have very
few threads. Also, Type-C applications do not benefit from
DYNCTA, except for RAY and CP. They gain improvements



0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

8

9

A
ct

iv
e 

T
im

e 
R

a
ti

o
 

(R
A

C
T

)

N
u

m
b

er
 o

f 
C

T
A

s

Average n N opt RACT

(a) SAD

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

8

9

A
ct

iv
e 

T
im

e 
R

a
ti

o
 

(R
A

C
T

)

N
u

m
b

er
 o

f 
C

T
A

s

Average n N opt RACT

(b) JPEG

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

8

9

A
ct

iv
e 

T
im

e 
R

a
ti

o
 

(R
A

C
T

)

N
u

m
b

er
 o

f 
C

T
A

s

Average n N opt RACT

(c) RAY

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

8

9

A
ct

iv
e 

T
im

e 
R

a
ti

o
 

(R
A

C
T

)

N
u

m
b

er
 o

f 
C

T
A

s

Average n N opt RACT

(d) FFT

Fig. 8: CTA modulation over time. Except RAY, which is Type-C and suffering from low util, DYNCTA is able to modulate TLP accurately.
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Fig. 9: Average number of CTAs assigned to the cores, with the default CUDA approach, DYNCTA, and the optimal TLP.

due to mitigating the effects of low core utilization, although
the improvements for RAY are far from reaching optimal
TLP results. There are 4 applications that lose more than 2%
performance with DYNCTA. The performance reductions in
NW, which is Type-X, and BLK are around 2%. DYNCTA
degrades the performance of PFF by 2.5%, and SCP by 3%.

Although more evident in Type-C applications, almost
all applications suffer from util towards the end of kernel
execution. DYNCTA does not aim to optimize TLP according
to util, which is an important factor in determining the optimal
TLP. Thus, DYNCTA fails to outperform optimal TLP in most
cases. Among 31 applications, 10 applications perform at least
as good as optimal TLP. DYNCTA outperforms optimal TLP
by more than 2% in BFS, SD1, STO, and PVC. We observe a
4× reduction in latrt for STO. DYNCTA reduces the memory
waiting time of BFS by 2.2×. SD1 benefits from reductions
in both memory waiting time and latrt.

We also compared DYNCTA against the two-level sched-
uler (TL) proposed by Narasiman et al. [28]. Our experiments
show that DYNCTA outperforms TL by 12.5%, on average.
TL yields significantly higher performance than DYNCTA for
RAY and BLK. TL sends the memory requests in groups,
instead of sending them at once. This approach allows cores
to receive data in groups as well, reducing the write-back
contention. In BLK, this proves effective, and even though the
memory waiting time is less in DYNCTA, TL manages write-
back better, and shows better performance, even outperforming
optimal TLP. RAY performs better with TL because the load
distribution across cores becomes more balanced compared
to DYNCTA, due to the similar reasons explained earlier
in this section. Note that TL is a warp scheduling policy,
and DYNCTA is a CTA scheduling policy, and they are
independent of each other. In fact, these two schemes can be
used in tandem to boost GPGPU performance further.

Since DYNCTA mainly targets Type-M applications by
reducing DRAM contention, we expect to observe lower latrt.
Although we have shown the effects of util on IPC for

some applications, DYNCTA does not directly aim to improve
util. Figure 11 plots the impact of DYNCTA on latrt and
util. DYNCTA provides a better load balancing in NQU,
CP, and RAY, and increases util by 28%, 19%, and 12%,
respectively. For the rest of the applications, util does not
change significantly. We observe that latrt drops for most
applications, which is in line with their IPC improvements.
Most Type-C applications also have lower latrt, but since they
are compute-intensive, change in latrt does not translate to
change in IPC. The average reduction in latrt is 33% across all
applications. DYNCTA effectively reduces latrt while keeping
the cores busy. Since GPUs are throughput processors and most
GPGPU applications are not latency sensitive, the improve-
ment in latrt might not necessarily translate into performance
benefits, whereas RACT would be a better metric reflecting
the effectiveness of DYNCTA. We observe that DYNCTA
improves RACT by 14% on average. Note that RACT is the
average of per-core active cycle ratios thus, does not take CTA
imbalance effects into account. By partially balancing CTA
load, we gain extra performance on top of better RACT.

Since limiting the number of CTAs reduces the working
set of the application in the memory, cache contention reduces
and hit rates improve. On average, L1 miss rates reduce from
71% to 64%. These results show that the increasing hit rates
contributes to the performance of DYNCTA.

B. Sensitivity Analysis

We conducted a sensitivity analysis to demonstrate the
performance of DYNCTA on larger systems. Since crossbar
is not scalable for large systems, we conducted sensitivity
analysis using a 2-D mesh interconnect. As we increase the
number of cores (C) in the system, we expect more DRAM
contention, which would increase the benefits of our schemes.
On the other hand, increasing C would limit the working
region of DYNCTA, since there will be fewer CTAs assigned
to the cores, limiting the benefits of our schemes. We used two
different configurations: (1) a 56 core system with 8 MCs (8×8
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Fig. 11: Effects of DYNCTA on round-trip fetch latency (latrt), and core utilization (util), w.r.t. CUDA default.

mesh), and (2) a 110 core system with 11 MCs (11×11 mesh).
We observe that, DYNCTA is effective in both configurations,
providing average performance improvements around 20%.

As DYNCTA mostly helps Type-M applications, the num-
ber of memory requests sent from a core is an important factor
that can affect its benefits. To evaluate this, we varied the size
of MSHRs per core and observed that changing MSHR/core
from 64 to 32 and 16 degrades the average performance by
0.3% and 0.6%, respectively. We also examined the impact of
memory frequency on DYNCTA by evaluating the system with
1107 MHz [3] and 1333 MHz GDDR3, and observed up to
only 1% reduction in our benefits. Slight performance loss is
expected, since DYNCTA aims to improve memory bandwidth.
However, memory bandwidth is the main bottleneck in GPUs,
and projected to be even more so in the future [20]. Thus, we
believe that our schemes will be applicable to future GPUs.

We also conducted a sensitivity analysis on the parameters.
Changing the sampling period from 2048 to 4096 cycles
degraded our benefits by 0.1%. We also varied the thresholds
(t idle, t mem l, and t mem h) between 50% and 150% of
their default values (given in Section IV), and observed losses
between 0.7% and 1.6%. Thus, DYNCTA can work with
almost equal efficiency with a broad range of threshold values.

VI. RELATED WORK

To the best of our knowledge, this is the first paper that
proposes a simple and a low-overhead architectural solution
to dynamically optimize TLP for holistically improving the
efficiency of the entire memory-subsystem of GPGPUs. In this
section, we briefly describe the closely related works.

Optimizing thread-level parallelism: Rogers et al. [33]
propose a cache conscious scheduling scheme, which dynami-
cally varies TLP to reduce cache contention. Our work takes a
holistic view, with the intention of improving the efficiency
of the whole memory sub-system. As shown in the paper,
the proposed dynamic CTA allocation strategy does not only

reduce contention in caches, but also in DRAM and intercon-
nect. Bakhoda et al. [4] also show the benefits of lowering
the number of concurrently CTAs below the default CTA
limit. Our work takes a further step ahead, and dynamically
calculates the optimal number of CTAs that should be executed
concurrently. Hong et al. [15] develop an analytical model to
predict the execution time of GPUs. This model considers
available TLP and memory intensiveness of an application.
However, in our paper, we propose a dynamic technique
that monitors the changing behavior of an application and
calculates the optimal TLP for GPGPUs in terms of number
of CTAs. Assigning work to the cores at the granularity of
CTAs also allows to take advantage of the data locality present
among warps belonging to the same CTA [17]. In the context
of CMPs, Chadha et al. [5] also propose a dynamic TLP
management scheme. An analytical model showing the effects
of the number of concurrent threads on shared caches was
proposed by Chen et al. [7].

Scheduling techniques in GPUs: Various warp scheduling
techniques have been proposed to reduce cache contention
and improve DRAM bandwidth. The two-level warp scheduler
proposed by Narasiman et al. [28] splits the concurrently exe-
cuting warps into groups to improve memory latency tolerance.
We have already provided quantitative comparisons of our
proposal with the two-level scheduler. Gebhart and Johnson
et al. [12] propose a two-level warp scheduling technique
that aims to reduce energy consumption in GPUs. Jog et
al. [19] propose OWL, a series of CTA-aware warp scheduling
techniques to reduce cache contention and improve DRAM
performance for bandwidth-limited GPGPU applications. Jog
et al. [18] propose a prefetch-aware warp scheduling policy,
which effectively coordinates with a prefetcher for further
improving the memory latency tolerance in GPGPUs. Several
memory [2], [23] and application [1] scheduling techniques
have also been proposed. All these schedulers assume a given
amount of TLP. Our approach is complementary to all the
above works, as our dynamic strategy first calculates optimal



TLP and then later the above mentioned schedulers can be
implemented for better performance.

VII. CONCLUSIONS

Enhancing the performance of applications through abun-
dant TLP is one of the primary differences of GPGPUs com-
pared to CPUs. Current GPGPU schedulers attempt to allocate
the maximum number of CTAs per core to maximize TLP
and enhance performance by hiding the memory latency of a
thread by executing another. However, in this paper, we show
that executing the maximum number of CTAs per core is not
always the best solution to boost performance. The main reason
behind this is the long round-trip fetch latencies primarily
attributed to high number of memory requests generated by
executing more threads concurrently. Instead of effectively
hiding long memory latencies, executing high number of
threads concurrently might degrade system performance due
to increasing cache, network and memory contention.

The main contribution of this paper is a dynamic CTA
scheduling algorithm for GPGPUs, which attempts to allo-
cate optimal number of CTAs per-core based on application
demands, in order to reduce contention in the memory sub-
system. The proposed DYNCTA scheme uses two periodically
monitored metrics, C idle and C mem, to allocate fewer CTAs
to applications suffering from high resource contention, and
more CTAs to applications that provide high throughput.

Experimental evaluations show that DYNCTA enhances
application performance on average by 28% (up to 3.6×)
compared to the default CTA allocation strategy, and is close
to the optimal static allocation, which is shown to provide
39% performance improvement. We conclude that optimizing
TLP via CTA scheduling can be an effective way of improving
GPGPU performance by reducing resource contention.
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