
TR-CSE-2013-014 CSE-PennState Tech Report.

This is a 2-page summary of the original paper – OWL: Cooperative Thread Array Aware Scheduling Techniques for

Improving GPGPU Performance, ASPLOS-2013

Memory-Aware Warp Scheduling

Adwait Jog†, Onur Kayiran†, Nachiappan CN†, Asit Mishra§ , Mahmut Kandemir†, Onur Mutlu∗ , Ravi Iyer§ , Chita Das†

Pennsylvania State University†, Intel Labs§, Carnegie Mellon University∗

1. ABSTRACT
A modern Graphics Processing Unit (GPU) is characterized

by numerous programmable computational cores and thou-
sands of simultaneously active fine-grained threads. These
threads are grouped into thread blocks, also known as coop-
erative thread arrays (CTAs). All the threads within a CTA
are scheduled on the same core at the granularity of warps. In
spite of having numerous resident threads and theoretically
high thread-level parallelism (TLP), GPU cores still suffer
from high periods of idle times, resulting in under-utilization
of hardware resources. These idle times are primarily a re-
sult of the inability of the commonly-employed warp schedul-
ing policies in facilitating a GPU core to completely toler-
ate the long memory fetch latencies, which are primarily at-
tributed to: (1) contention in caches caused by multiple con-
current threads, (2) DRAM contention caused by various con-
current threads from multiple GPU cores, and (3) limited off-
chip DRAM bandwidth available in GPUs. The commonly-
employed warp scheduling policies, for example, round-robin
(RR) scheduler is shown to be ineffective in alleviating all
these three sources of long memory fetch latencies [3–5]. Al-
though the recently-proposed two-level warp scheduler [5]
performs better than the RR scheduler on all three aspects,
it is far from optimal [2–4]. The cache-conscious warp sched-
uler [6], developed concurrently with our ASPLOS 2013 pa-
per, was shown to outperform both the two-level and RR
schedulers, but it addresses contention in only caches, not in
DRAM.

In this paper, we propose a comprehensive c(O)operative
thread array a(W)are warp schedu(L)ing policy, called

OWL1, which is a four-pronged concerted approach for im-
proving overall performance in GPUs. OWL cohesively: (1)
improves latency tolerance, (2) alleviates contention in caches
and memory, (3) improves DRAM bandwidth utilization via
improving memory bank-level parallelism and row-buffer lo-
cality, and (4) facilitates effective incorporation of memory-
side prefetching techniques. To the best of our knowledge,
this is the first unified warp scheduler that cohesively takes
cache locality, DRAM row-buffer locality, and DRAM bank-
level parallelism into account, and orchestrates with memory-
side prefetching techniques.

2. SUMMARY

2.1 Problem I: Cache contention
In GPUs, each core is capable of executing thousands of

threads concurrently. In most cases, the data brought by a
large number of threads executing simultaneously does not
fit into the cache. This hampers the opportunity of reusing
the data brought by threads, eventually leading to a high
number of L1 misses. In fact, this problem is more se-
vere with the commonly-employed baseline round-robin (RR)
warp scheduling policy, where the CTAs assigned to a core as
well as all the warps inside a CTA are given equal priority,

1
Original paper: OWL: Cooperative Thread Array Aware Scheduling Tech-

niques for Improving GPGPU Performance, in the Proceedings of the 18th

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS-2013), pp 395-406, Houston, TX, March

2013. An animated presentation summarizing the paper can be downloaded from:

http://www.cse.psu.edu/~axj936/docs/OWL-ASPLOS-Slides.pptx

The full version of ASPLOS paper can be downloaded from:

http://www.cse.psu.edu/~axj936/docs/OWL-ASPLOS-2013.pdf

and are executed in a round-robin fashion. As a result, a large
group of warps/threads access the L1 cache in a short inter-
val of time, thereby increasing the cache contention. Further,
with RR, most of the warps arrive at long latency memory
operations roughly at the same time. As a result, the GPU
core becomes idle because there may be no warps that are
not stalling due to a memory operation, which significantly
reduces the latency tolerance of GPUs.

Solutions and Key Insights: OWL tackles this problem
using two schemes.
(a) Scheme-1: OWL groups all the available CTAs on a
core into smaller groups and schedules all groups in a round-
robin fashion. Figure 1(A) illustrates this scheme. It assumes
4 CTAs are launched on a GPU core, and each group has 1
CTA, resulting in 4 groups in total. First, the warps of group
1 (CTA-1) are prioritized until they are blocked waiting for
memory. At this point, the warps of CTA 3 are executed. If
the warps of CTA 1 become ready to execute after their data
arrives from memory, and if the core is executing warps of
CTA 5, it will keep executing the warps of CTA 5, and will
continue with CTA 7 after finishing the execution of CTA5. It
will not choose the warps from CTA 1 even though they are
ready because it follows a strict round-robin policy among dif-
ferent CTAs. The advantage of this scheme is that it improves
latency hiding capability and reduces idle periods as not all the
warps reach long latency operations around the same time. On
the flip side, the data brought by the warps of CTA 1 earlier,
before they were stalled, becomes more likely to get evicted
by other CTAs’ data as the core keeps on executing the CTAs
in a round-robin fashion.
(b) Scheme-2: To address the drawback of

Scheme-1, second scheme of OWL always prioritizes
a group of CTAs in a core over the rest of the CTAs until the
prioritized group finishes its execution. Unlike Scheme-1,
where each group of CTAs is executed one after another, this
scheme always prioritizes one group of CTAs over the rest
whenever a particular group of CTAs is ready for execution.
This significantly reduces cache contention, as in a particular
time interval, only a small number of CTAs are given higher
priority to keep their data in the private caches such that
they get the opportunity to reuse it and take advantage of the
locality between nearby threads and warps (associated with
the same CTA) [1]. Figure 1 (B) shows this pictorially. This
scheme starts choosing warps belonging to CTA 1 (group 1)
once they become ready, whereas in Scheme-1 the sched-
uler keeps on choosing warps from CTA 5 (group 3), and
then CTA 7 (group 4). In other words, we always prioritize a
small group of CTAs and shift the priority to the next group
only after the highest priority group completes its execution.

(A)

(B)

Data for CTA 1 arrives.

Switch to CTA 1.

Data for CTA 1 arrives.

No switching.

1 3 7 1 3

1 3 1 3 5 5 5

5 5 7

7 7

T

Figure 1: An illustrative example showing how OWL can

reduce cache contention. Label in each box refers to the

corresponding CTA number.

http://www.cse.psu.edu/~axj936/docs/OWL-ASPLOS-Slides.pptx
http://www.cse.psu.edu/~axj936/docs/OWL-ASPLOS-2013.pdf

TR-CSE-2013-014 CSE-PennState Tech Report.

This is a 2-page summary of the original paper – OWL: Cooperative Thread Array Aware Scheduling Techniques for

Improving GPGPU Performance, ASPLOS-2013

Bank

1

Bank

2

Bank

3

Bank

4

L2

Core 1

CTA 1

CTA 3

Core 2

CTA 2

CTA 4

Core 1

CTA 1

CTA 3

Core 2

CTA 2

CTA 4

High BLP

Core 1

CTA 1

CTA 3

Core 2

CTA 2

CTA 4

Low Row Locality

Low BLP

High Row Locality

High BLP

High Row Locality

(A) (B) (C1)

Bank

1

L2 L2

Bank

2

Bank

3

Bank

4

Idle! Idle!

Bank

1

Bank

2

Bank

3

Bank

4

Prefetch

Bank

1

Bank

2

Bank

3

Bank

4

Core 1

CTA 1

CTA 3

Core 2

CTA 2

CTA 4

Prefetch hits at L2

L2

(C2)

Figure 2: An example illustrating 4 CTAs assigned to 2 cores: (A) the underutilization of banks with Scheme-2, (B)

improved memory bank-level parallelism with Scheme-3, (C1, C2) the positive effects of memory-side prefetching

Scheme-4.

Figure 1 shows that during time interval T , only 3 CTAs are
executing and taking advantage of the private caches, contrary
to 4 CTAs in Scheme-1 (Figure 1 (A)). This implies that a
smaller number of CTAs gets the opportunity to use the L1
caches concurrently, thereby reducing the cache contention.

2.2 Problem II: DRAM contention
and limited DRAM bandwidth

Massive multi-threading not only creates contention in the
private cache of a single core, but also manifests itself at the
DRAM, due to the memory requests sent by multiple cores.
One thread’s memory requests can cause DRAM bank con-
flicts, row-buffer conflicts, and data/address bus conflicts with
another memory requests. As the number of GPU cores in-
creases, the pressure on the DRAM system and hence, the in-
terference among the threads that share the DRAM increases.
We identify that the current warp scheduling techniques are
not effective in managing the contention in DRAM systems.

In order to understand the reasons behind the DRAM con-
tention, we studied 38 applications across various benchmark
suites. Our studies show that that there is significant DRAM
page locality between consecutive CTAs (see Sec. 4.3 in [3]).
On average, the same DRAM page is accessed by consecutive
CTAs 64% of the time. Hence, if two consecutive CTA groups
are scheduled on two different cores and are always prior-
itized according to Scheme-2, they would access a small
set of DRAM banks more frequently. This reduces mem-
ory bank-level parallelism (BLP) and increases the queuing
time at the banks. Figure 2 (A) depicts this phenomenon pic-
torially. Since consecutive CTAs (CTAs 1 and 2) share the
same rows, prioritizing them in different cores enables them
to access these rows concurrently, thereby providing high row
buffer hit rate. Unfortunately, for the exact same reason, this
approach leads to low BLP because not all the DRAM banks
are utilized (In Figure 2 (A), two banks stay idle).

Solutions and Key Insights: We develop two schemes to
achieve high BLP and high row-buffer hit rate.
(a) Scheme-3: For improving BLP, we would like to
schedule CTAs so that the CTAs which do not share rows are
always prioritized in different cores. We attempt to achieve
this by always prioritizing non-consecutive CTAs in different
cores, since consecutive CTAs are likely to access the same
rows. Figure 2 (B) depicts the working of this scheme. In-
stead of prioritizing consecutive CTAs (CTAs 1 and 2) in two
cores, Scheme-3 prioritizes non-consecutive ones (CTAs 1
and 4). This enables all four banks to be utilized concurrently,
whereas Scheme-2 utilizes only two banks (Figure 2 (A)).
(b) Scheme-4: A drawback of Scheme-3 is that it

reduces DRAM row-buffer locality. This is because rows
opened by a CTA cannot be completely utilized by its con-
secutive CTAs since consecutive CTAs are not scheduled si-
multaneously any more. To recover the loss in DRAM row-
buffer locality, we develop a memory-side prefetching mech-
anism, in which some of the data from an already opened
row is brought to the nearest on-chip L2 cache partition. The

key idea of memory-side prefetching is to prefetch the so-far-
unfetched cache lines from an already open row into the L2
caches, after all the demand requests to the row in the mem-
ory request buffer are served. The prefetched lines can be
useful for both currently executing CTAs, as well as the CTAs
that will be launched later. Figure 2 (C1, C2) illustrates how
this scheme works. In Figure 2 (C1), during the execution of
CTAs 1 and 4, Scheme-4 prefetches the data from the open
rows that could potentially be useful for other CTAs (CTAs 2
and 3 in this example). If the prefetched lines are useful (Fig-
ure 2 (C2)), when CTAs 2 and 3 execute and require data from
the same row, their requests will hit in the L2 cache and hence
they will not need to access DRAM for the same row.

2.3 Evaluation
Hardware Overheads: We synthesized the RTL design of

the hardware required for OWL scheduler, and for a 28-core
system, the area overhead is 0.18 mm

2 (see Sec. 4.5 of [3]).
Key Results: OWL provides benefits via (a) Schemes 1

and 2: selecting and prioritizing a group of CTAs sched-
uled on a core, thereby improving both L1 cache hit rates and
latency tolerance, (b) Scheme-3: scheduling CTA groups
that likely do not access the same memory banks on differ-
ent cores, thereby improving DRAM bank parallelism, and
(c) Scheme-4: employing memory-side prefetching to take
advantage of already-open DRAM rows, thereby improving
both DRAM row locality and cache hit rates. We evaluate
the performance of the OWL scheduling policy, consisting of
the four components integrated together, on a 28-core sim-
ulated GPU platform with 38 applications. For a set of 19
highly memory-intensive applications, Schemes 1 and 2
together improve the average L1 cache hit rate by 18% over
the baseline RR policy, thereby providing 25% improvement
in IPC performance. Scheme-3 improves average BLP by
11% and reduces row-buffer locality by 14% compared to
Scheme-2, resulting in an additional 6% improvement in
IPC performance. Scheme-4 restores the row-buffer local-
ity (while preserving BLP), leading to overall IPC perfor-
mance improvement performance of 33% over the baseline
RR scheduling policy. OWL also outperforms the recently-
proposed two-level scheduling policy [5] by 19%.

References
[1] W. Jia, K. A. Shaw, and M. Martonosi. Characterizing and Improving the Use of

Demand-fetched Caches in GPUs. In ICS, 2012.
[2] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R.

Das. Orchestrated Scheduling and Prefetching for GPGPUs. In ISCA, 2013.
[3] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir, O. Mutlu,

R. Iyer, and C. R. Das. OWL: Cooperative Thread Array Aware Scheduling
Techniques for Improving GPGPU Performance. In ASPLOS, 2013.

[4] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das. Neither More Nor Less:
Optimizing Thread-level Parallelism for GPGPUs. In PACT, 2013.

[5] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N.
Patt. Improving GPU Performance via Large Warps and Two-level Warp
Scheduling. In MICRO, 2011.

[6] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Cache-Conscious Wavefront
Scheduling. In MICRO, 2012.

	Abstract
	Summary
	Problem I: Cache contention
	Problem II: DRAM contention and limited DRAM bandwidth
	Evaluation

