
Characterizing Accuracy-Aware Resilience of
GPGPU Applications

Bin Nie, Adwait Jog, and Evgenia Smirni
William & Mary

Email: {bnie, esmirni}@cs.wm.edu, ajog@wm.edu

Abstract—Graphics Processing Units (GPUs) have rapidly
evolved to enable energy-efficient data-parallel computing. In
addition to achieving exascale performance at a stringent power
budget, it is imperative for GPUs to provide reliable computing
guarantees to the end user. In current commodity systems, such
guarantees are often achieved by incurring high protection cost in
terms of performance, power, and hardware resources. However, we
argue that these strict guarantees are often not required (and that
the associated protected overheads can be significantly reduced)
because several GPGPU applications are either fault-tolerant or
can accept a quantifiable loss in output quality. To this end,
this paper characterizes in a hierarchical manner the accuracy-
aware resilience of GPGPU applications consisting of thousands
of threads. This characterization study shows that accuracy-aware
error resilience exhibits several interesting patterns across threads
at different hierarchies (i.e., kernel/thread-block/warp). The insights
from this characterization study can be used to reduce the overheads
of expensive protection or recovery mechanisms that are typically
used by GPUs to ensure application reliability.

I. INTRODUCTION

Graphics Processing Units (GPUs) have rapidly evolved to
enable energy-efficient data-parallel computing for a broad
range of areas such as science, engineering, medicine, social
media, gaming, and finance [8], [11], [31], [38]. Large-scale
data-parallel general purpose GPU (GPGPU) applications
from the aforementioned domains are typically long-running,
from hours to days. Discarded application outputs due to
software or hardware faults could significantly undermine the
operational efficiency of large-scale systems [40], making it
imperative to provide mechanisms to cope with different types
of runtime failures and faults.

In order to provide insights into ways to achieve reliable
GPU computing, many previous works have focused on char-
acterizing GPU error resilience [27]–[29]. Typically, these
works leverage fault-injection models to evaluate the tolerance
of specific applications in the presence of GPU faults. GPU-
Qin [9], SASSIFI [14], LLFI-GPU [23] and most recently
Nie et al. [30], [46] propose methodologies to systematically
inject faults to application threads, record their effects on the
application output, and evaluate fault propagation. Although
the above works are insightful and useful, their approaches are
rather conservative in assuming that a slightest change in the
application output, which is referred to as Silent Data Corrup-
tion (SDC) [9], [14], [23], is always unacceptable to the end
user. Consequently, these works conclude that various kinds
of protection mechanisms such as frequent check-pointing
of necessary application states, re-computation of vulnerable
codes, or fault protection mechanisms are necessary to ensure

More
Strict Strict Default

Relaxed
More

Ralaxed

SDC Threshold

0%

20%

40%

60%

80%

100%

PC
T.

 O
ut

pu
t

MSK SDC-A SDC-R DDC OTHER

(a) (b)

Fig. 1. (a) Effect of a single bit fault on the BlackScholes application output
shows that a significant percentage of the fault injection runs lead to silent
data corruption (SDC), which can be acceptable to a user (SDC-Accept).
The percentage of SDC-Accept increases as the user-defined acceptability
threshold becomes less conservative. (b) Code snippet from BlackScholes
shows the default evaluation metric (line 1) and threshold value (line 6) to
determine the correctness of application output.

reliable GPU computation [19], [22], [48]. However, these
methods often incur high overhead in terms of performance,
power, and hardware resources [19], [20], [48], [49].

To reduce these overheads, we acknowledge that not all
faults result in unacceptable loss in application output quality.
Therefore, if a user is willing to tolerate a quantifiable loss
in output quality, the overhead to achieve high resilience can
be avoided. We call this concept accuracy-aware resilience.
In order to understand the interplay between quantifiable
loss in output quality and the application resilience profile,
we show the outcome of over 15K single-bit1 fault-injection
experiments on the output of the BlackScholes application [32]
in Figure 1. We assume that a user can measure the ac-
ceptability of the output quality with five different thresholds
ranging from very strict to very relaxed. We observe that with
the default threshold (i.e., the value specified by the CUDA
benchmark), a total of 89.1% faults are benign: 31.8% are
masked (i.e., there is no change in the application output)
and 57.3% can be accepted (SDC-Accept). Only 10.9% of the
outputs are badly corrupted, either beyond user acceptability
(SDC-Reject) or easily detectable (detectable data corruption
– DDC), or result in crashes or hangs. If the user accepts
more relaxed thresholds for the application output, the appli-
cation resilience coverage, i.e., the percentage of benign faults
(masked and SDC-Accept), further increases. Motivated by the
above observations, we ask the following two questions:

1) How can we systematically analyze the accuracy-aware
error resilience of GPGPU applications?

1We focus on single-bit faults, which are the most commonly observed
faults in GPGPUs [41] and are shown to be sufficient in capturing the
reliability characteristics of GPGPU applications [37].

2) How can we leverage this analysis to enable low-overhead
reliable GPU computing?

One of the major challenges in answering these questions
is to come up with a methodical approach that captures the
execution flows and resource usage of thousands of concur-
rently executing threads in GPGPU applications. To this end,
we adopt a hierarchical approach, which is based on the
inherent GPGPU application hierarchy that arranges threads
at three levels:2 kernels, thread-blocks (or cooperative thread
arrays (CTAs) in CUDA terminology), and warps. Note that
resource allocation in GPUs happens in the same order [18].
The kernel(s) are first launched on the GPUs, followed by
per-core resource allocation across CTAs. The warps inside
each CTA are then launched in a lock-step fashion on the
single-instruction-multiple-thread (SIMT) execution lanes. We
associate this resource allocation procedure with our proposed
accuracy-aware resilience characterization, which we show to
be an effective way to determine which resources at what
levels of the application hierarchy contribute to the user
acceptable (SDC-Accept) faults and hence can be protection-
free.

As a use case of the proposed hierarchical analysis of
GPGPU resilience, we consider the popular re-computation
model [44] as a way to provide protection and assure re-
liable computing: if the application outputs of the actual
computation and re-computation match, then execution can be
declared fault-free. Clearly, the overhead of re-computation
can be severe. For example, if re-computation is performed
in parallel to the actual execution, double hardware resources
(e.g., core/memory/register files) would be required. If per-
formed sequentially, the total execution time (including re-
computation) doubles. Our hierarchical approach first analyzes
the error resilience of representative threads of a kernel to
determine if the kernel has the level of resilience that is
required by the user. If it is the case, the re-computation of
the entire kernel is not required and its associated overheads
are saved. On the other hand, if the resilience coverage is not
adequate, we perform the error resilience analysis at a finer
granularity (i.e., at the CTA-level). If this analysis determines
that only a fraction of CTAs do not meet the resilience cover-
age requirements, we require only the re-computation of such
vulnerable CTAs. Consequently, the overall re-computation
overhead is reduced because not all CTAs need to be re-
computed. We show that our statistically-validated hierarchical
approach can provide significant reduction in re-computation
overhead while still meet user requirements for application
output accuracy and resilience coverage.

To the best of our knowledge, this is the first work to
systematically and comprehensively analyze the accuracy-
aware resilience for a diverse set of GPGPU applications. We
study a total of 15 benchmarks (26 kernels) and launch over
330K fault-injection runs (with an average of 10K runs per
kernel), leading to the following key contributions:

2Section II provides a detailed background on the GPGPU application
hierarchy.

• We introduce the concept of accuracy-aware resilience to
GPGPU applications, which provides more opportunities
for exploring low-overhead reliable GPU computing.

• We observe that the resilience of a diverse set of GPGPU
applications can be classified hierarchically at different
levels:
a) Kernel-level: Accuracy-aware error-resilience can in-
crease significantly if the user is able to tolerate a limited
amount of inaccuracy in the application outputs.
b) CTA-level: Accuracy-aware error-resilience can vary
significantly across groups of CTAs. Studying a few
CTAs per group is enough to represent the overall
accuracy-aware error-resilience of GPGPU applications.
c) Warp-level: Accuracy-aware error-resilience is similar
across warps within a group of CTAs. Therefore, it
is sufficient to perform accuracy-aware error-resilience
analysis only at the CTA-level.

• As a case study, we show that the proposed hierarchi-
cal approach can reduce protection overheads related to
re-computation based on user-defined fault tolerance and
resilience coverage. Specifically, we observe that: a) The
physical resources allocated to the entire kernel for re-
computation are saved (and potentially be used for other
useful work or be turned-off for power savings) if a user
is able to accept a certain resilience coverage and output
quality. b) Under stricter user-defined requirements, the
re-computation overhead can still be reduced by enabling
re-computation at a finer granularity (e.g., at CTA/warp
level). Overall, the proposed hierarchical approach is able
to reduce re-computation overhead while satisfying user-
defined output quality and resilience coverage.

II. BACKGROUND AND METHODOLOGY

This section provides a brief overview of the baseline
GPU architecture and GPGPU application hierarchy, followed
by a description of the fault injection methodology and the
evaluated applications.
A. GPU Architecture and GPGPU Application Hierarchy

Baseline GPU Architecture. A typical GPU consists of
multiple cores, also called streaming-multiprocessors (SMs)
in NVIDIA terminology [33]. Each core is associated with
private L1 data, texture and constant caches, software-managed
scratchpad memory, and register files. The cores are connected
to memory channels (partitions) via an interconnection net-
work. Each memory partition is associated with a shared L2
cache, and its associated memory requests are handled by a
GDDR5 memory controller.

Recent commercial GPUs use single-error-correction
double-error-detection (SECDED) error correction codes to
protect register files, L1/L2 caches, shared memory and
DRAM from soft errors, and use parity to protect the read-only
data cache. Other structures like arithmetic logic units (ALUs),
load control units (LCUs), thread schedulers, instruction dis-
patch units, and interconnect network are not protected [1]–[3].
GPGPU Applications and Execution Model. GPUs rely on
the single-instruction-multiple-thread (SIMT) philosophy and

GPU
Application

Kernel	1Kernel	1

Kernel	2

Kernel	𝑛
…

… …

CTA

Warp	2
…

Warp 1
…

Warp	𝑛
…

CTA 1
…

CTA 2
…

CTA 𝑛
…

Kernel

32

Fig. 2. A simplified overview of GPGPU application hierarchy.

concurrently execute thousands of threads over a large amount
of data to achieve high throughput. Figure 2 presents a sim-
plified overview of thread hierarchy in GPGPU applications.
A typical GPGPU application launches several kernels. Each
kernel is divided into groups of threads, called thread blocks,
which are also known as Cooperative Thread Arrays (CTAs) in
CUDA terminology. A CTA encapsulates all synchronization
and barrier primitives among a group of threads [18], [21].
Such abstraction allows the underlying hardware to relax the
execution order of the CTAs to maximize parallelism. The
underlying architecture sub-divides each CTA into groups of
32 threads (called warps). Each warp is essentially a collection
of individual threads that execute a single instruction on
the functional units in lock step. This sub-division is an
architectural abstraction and is transparent to the application
programmer. Like CTAs, warps can also be executed in any
order.

We selected benchmarks that cover various workloads from
diverse areas, such as image processing, finance, linear alge-
bra, physics, molecular dynamics, and data mining. In total, we
evaluated 15 GPGPU applications from widely-used bench-
mark suites, including CUDA [32], SHOC [7], Rodinia [6],
and Mars [15], see Table I. As kernels of GPGPU applica-
tions normally implement independent modules, we perform
resilience coverage analysis separately for each kernel. For
benchmarks with more than one kernel, we randomly select at
most four kernels for fault injection experiments. In the rest
of this paper, if the kernel index is not specified, it implies
that the benchmark only contains one kernel.
B. Fault Injection Methodology

Framework. We employed a fault injection methodology
using GPGPU-Sim [5]. Consistent with prior works [9], [14],
[43], we inject a single fault per application run and record
the detailed execution information provided by GPGPU-Sim,
including the fault site, the original and impacted values in
the register, and the final output. For all chosen benchmarks
(see Table I), we launch 330K fault-injected runs, with an
average of 10K runs per benchmark kernel. In Section IV-D
we show that 10K runs are beyond sufficient to obtain results
of statistical significance with 95% confidence intervals.
Fault Injection Outcome Classification and Analysis. For
each fault injection experiment, we examine the application
output to understand the effect of an injected fault. There are
several possible outcomes. If faults do not lead to any differ-
ence between the fault-injected and the fault-free outputs, they
are classified as Masked faults. In some cases, although faults

TABLE I
LIST OF APPLICATIONS WITH EVALUATION METRICS AND THRESHOLDS.

Suite Benchmark Evaluation Metric Default
Threshold

CUDA

BlackScholes (BS) L1 norm* 1e − 6
Ray Tracing (RAY) MSE of images 0.1
Convolution Separa-
ble (CONS)

Relative L2 norm* 1e − 6

Fast Walsh Transform
(FWT)

L2 norm* 1e − 6

JPEG MSE of images 0.1
Kmeans (KMN) MSE of centroid coordi-

nates
0.01

Laplace3D (LPS) RMS error* 1e − 6
Neural Network (NN) Difference in prediction

accuracy
1%

Scalar Product (SCP) L1 norm* 1e − 6
Scan Large Array
(SLA)

PercLoss 1%

Mars WordCount (WC) Difference in word count 1
Rodinia HotSpot (HS) MSE of output tempera-

ture list
0.01

SHOC
Breadth-First Search
(BFS)

PercLoss 1%

Molecular Dynamics
(MD)

PercLoss 1%

Sort Ranked Biased Overlap 0.01
* indicates metrics and thresholds as provided by benchmarks. Alternatively, the
threshold values can be provided by the user or administrator.

allow the application to execute completely, the application
output is incorrect. Such faults are typically classified as Silent
Data Corruption (SDC) faults. In certain circumstances, users
may accept the application output. Therefore, we further clas-
sify SDC faults into SDC-Accept and SDC-Reject according to
the user acceptability threshold. Furthermore, some corrupted
results can be easily detected (e.g., irregular negative value,
infinite or NaN value), we classify them as Detectable Data
Corruption (DDC). Lastly, faults can also result in crashes
or hangs. In summary, we classify fault-injected outputs into
five categories: (1) Masked, (2) SDC-Accept, (3) SDC-Reject,
(4) DDC, and (5) OTHER. The first two faults are benign and
define the resilience coverage of the application, while the rest
are non-benign.
Outcome Analysis. In order to determine whether a certain
SDC output is acceptable or not, we need a metric and thresh-
old value to quantitatively measure the difference between the
outputs of fault-injected and fault-free runs. Choosing the most
appropriate metric and threshold requires domain knowledge.
We anticipate that the evaluation metrics/thresholds are pro-
vided by the user. In addition, we also provide several choices
of commonly used metrics and threshold default values. For
most applications, we choose widely-used metrics such as
mean squared error (MSE)3 and percentage loss (PercLoss)4.
For certain applications, we use domain-specified metrics.
RAY and JPEG, which are image processing applications, are
evaluated by the MSE of images, pixel by pixel. For Neural
Network (NN), provided that the prediction accuracy for the

3MSE = 1
n

∑n
i=1 (Xi − Yi)

2, where X and Y are two vectors of size
n.

4PercLoss = # miss match
total

× 100%, where # miss match is the
number of different values in the fault-free and fault-injected outputs, and
total is the total count of values.

fault-free run is 100%, we use the difference to this value
as the evaluation metric. For Sort, the result of which is a
ranked list, we use the commonly used Ranked Biased Overlap
(RBO) [45] to quantify the difference between fault-free and
fault-injected outputs. Table I shows the evaluation metrics
and their respective default thresholds. Besides the default
threshold, we also evaluate application output with two more
strict and two more relaxed threshold values, yielding to a total
of five levels of SDC threshold values (as shown in Figure 1).
C. Baseline Fault Model

We used the popular single-bit fault injection model [9],
[14], [30] to evaluate the effect of soft errors in GPUs.
These faults affect the functional units such as arithmetic-
logic units (ALUs) and the load-store units (LSUs), which are
not ECC protected in commercial GPUs. A fault site contains
three aspects of data: (1) tid indicates the candidate thread,
(2) inst id and sim cycle identify the instruction and its
simulation cycle (sim cycle is necessary because the same
instruction can be executed many times if inside a loop), (3)
bit pos tells which bit location is affected. To mimic a single-
bit fault in a functional unit, we inject faults to data values
of the destination registers, which is standard practice in this
line of work [9], [14], [30].

The goal is to determine representative fault sites. We first
start with selecting representative threads (details in the next
Section). Each representative thread has a tid. Next, we profile
such a representative thread with the GPGPU-Sim simulator to
collect instruction-related execution details, including the in-
struction type, its simulation cycle, and the destination register
type. There can be tens to thousands of dynamic instructions
in one thread. In order to control the number of fault sites, we
randomly sample a few iterations for instructions inside loop
blocks. We also select all instructions outside loop blocks to
make sure we cover all types of instructions. Finally, for every
selected instruction, we flip one bit in its destination register.
The bit pos is chosen from a set of pre-selected bit position
candidates that are evenly spread in the register. Those bit
positions are selected to cover a range of positions in registers,
as it is impractical to conduct experiments on every single bit.

III. A HIERARCHICAL APPROACH TO THREAD
CLASSIFICATION

GPGPU applications can contain a massive number of
threads. Therefore, it is unrealistic to perform fault-injection
runs on every single thread. Consequently, we have to identify
a fraction of representative threads, which is a challenging
open problem. We realize this with a hierarchical classification
and thread selection method.
A. Multi-level Classification and Thread Selection

We propose and evaluate a hierarchical approach for thread
grouping. Following the hierarchy of GPGPU applications,
we classify threads at the CTA and warp levels. We group
CTAs (or warps) based on the distribution of thread dynamic
instruction (DI) counts5, which has been shown to be an

5Detailed kernel/CTA/warp/thread information can be obtained through the
GPGPU-Sim simulator [5].

G1

G2

(a) BlackScholes

G1

(b) SCP

Fig. 3. Distribution of thread dynamic instruction (DI) counts at the CTA
level for regular benchmarks (a) BlackScholes and (b) SCP. The red triangle
indicates the average and the blue error bar indicates one std.

effective proxy for accurately capturing the error resilience
of threads [9], [30]. The rationale is that threads with the
same DI count are likely to execute the exact same set of
instructions, thus resulting in similar error resilience behavior.
Such rationale is also confirmed with millions of fault injection
experiments [30]. We consider the mean and one standard
deviation of DI counts to quantitatively compare different
CTAs (or warps). Then, from each CTA (or warp) group, we
randomly select a limited number of threads for fault injection.

1) CTA-level classification: Regular CTA Analysis. First,
we illustrate the distribution of DIs at the CTA level for differ-
ent benchmarks. Figure 3 focuses on two regular benchmarks:
BlackScholes and SCP. The x-axis indicates the index of
CTAs, while the red triangle and the blue error bar correspond
to mean and one standard deviation of DI counts, respectively.
CTAs are sorted by the average DI counts in the ascending
order along the x-axis. Since we classify CTAs with similar
DI distribution as one group, there exist two distinct CTA
groups for BlackScholes (see Figure 3(a)). In addition, each
group only contains one type of thread (i.e., the standard
deviation of DI counts is 0). For such regular benchmarks,
we only group at the CTA level. Figure 3(b) reports on SCP,
another regular benchmark. All CTAs share the same mean and
standard deviation of DI counts while their standard deviation
is higher than that in Figure 3(a). For kernel-level and CTA-
level analysis, we classify all CTAs in SCP as a single group.
Because of the high variance in DI counts in certain CTAs,
we also perform warp-level analysis (see Section III-A2).
Irregular CTA Analysis. Figure 4 illustrates two irregular
benchmarks: HotSpot and RAY, which exhibit divergence in
the DI distributions due to branch instructions. We classify
CTAs in HotSpot into two groups (see Figure 3(a)): group G1
(regular group) contains CTAs with low standard deviation of
DI counts while group G2 (irregular group) contains CTAs
with diverse threads. Likewise, in RAY (see Figure 4(b)),
CTAs with no variance in DI counts are grouped into regular
groups G1 and G2, while all other CTAs are classified into
the irregular group G3.
Effect of Input. We explore the question: does the CTA
grouping method change with application input? If not, this
implies that it is possible to profile the kernel once and the
resulted grouping is applicable to other inputs. To explore
this, we feed HotSpot and RAY with three inputs: Small,
Medium, and Large. Table II shows the effect of various

G1

G2

(a) HotSpot

G1

G2G3

G3

G1

G2G3

G3

(b) RAY

Fig. 4. Distribution of thread dynamic instruction (DI) counts at the CTA
level for irregular benchmarks (a) HotSpot and (b) RAY. The red triangle
indicates the average and the blue error bar indicates one std.

TABLE II
THE IMPACT OF DIFFERENT INPUTS ON CTA GROUP POPULARITY FOR
HOTSPOT AND RAY. NOTATION: GRP-S/M/L=THE PERCENTAGE OF

CTAS IN THAT GROUP WITH SMALL/MEDIUM/LARGE INPUT,
R=REGULAR, IR=IRREGULAR.

Benchmark Grp. Type GRP-S GRP-M GRP-L

HotSpot G1 R 31% 26% 26%
G2 IR 69% 74% 74%

RAY
G1 R 25% 25% 27%
G2 R 9% 22% 28%
G3 IR 66% 53% 45%

* R: regular group; IR: irregular group.

inputs on group “popularity” (i.e., the percentage of CTAs
in that group). We observe that for both benchmarks, the
number of CTA groups, as well as their types (regular or
irregular), is the same in all three inputs, implying that the
CTA grouping strategy is input-independent. Additionally, we
notice that group popularity changes with different inputs. For
example, for HotSpot, the popularity of G1 starts from 31%
for Small input, then decreases but stabilizes at 26% as the
input size increases. For RAY, the popularity of G1 is quite
stable but that of G2 increases significantly from 9% to 28%
with larger input sizes. We also explore the impact of input
size on CTA grouping strategy for other benchmarks and this
observation persists. For brevity, we do not show those results.
In sum, the number of groups persists across different inputs
while their popularity may change.

2) Warp-level classification: We now focus on the warp
level to explore whether heterogeneity in terms of dynamic
instruction counts exists. Figure 5 shows the mean and one
standard deviation of DI counts at the warp level for SCP,
which is different from the CTA-level (compare to Fig-
ure 3(b)). At the warp level, we are able to classify warps into
four groups: regular groups G1, G2, and G3 with no variance
in their DI counts, and the irregular group G4.

We also investigate whether warp-level grouping is input-
independent and observe that this holds for all benchmark
kernels except MD. Figure 6(a) and (b) show the warp-level
plots for MD k1 using Small and Large inputs, respectively.
For Small input, we classify all warps into one irregular group
while for Large input, we classify warps into two groups: the
regular G1 and the irregular G2. However, if we further explore
the warp-level DI counts in MD k1 with Large input, we find
that all warps look very similar. In fact, almost all (i.e, ≥ 94%)
threads in most (i.e., ≥ 98%) warps in G2 share the same DI
count as threads in G1. That is, only 1 or 2 threads out of all 32
threads per warp are different. Therefore, all warps in MD k1

G1
G2

G3

G4

Fig. 5. Distribution of thread dynamic instruction counts at the warp level
for SCP. The red triangle indicates the average and the blue error bar
indicates one std.

G1

(a) Small input

G1

G2

(b) Large input

Fig. 6. Distribution of thread dynamic instruction counts at the warp level
for MD k1, using two inputs: (a) Small and (b) Large. The red triangle
indicates the average and the blue error bar indicates one std.

with Large input can also be classified as one group, just as in
the classification for MD k1 with Small input. Consequently,
even though different inputs may change standard deviation
of the DI count, it does not truly impact the resulting warp
grouping strategy. In other words, we can still apply the same
warp-level grouping method derived from one input to others.

TABLE III
CTA-LEVEL AND WARP-LEVEL CLASSIFICATION FOR BENCHMARK
KERNELS. NOTATION: %R-Grp.= % REGULAR GROUPS OVER ALL

GROUPS, # DI Grp.=# OF GROUPS CLASSIFIED BY DYNAMIC
INSTRUCTION COUNTS, # ErrDist Grp.=# OF GROUPS REFINED BY

FAULT DISTRIBUTION.

Benchmark #
CTA

#
Warp

Grp.
Level

% R-
Grp

DI
Grp.

ErrDist
Grp.

BlackScholes 480 1920 CTA 100% 2 1
RAY 512 2048 CTA 55% 3 3
CONS k6 1152 4608 CTA 100% 3 1
CONS k7 2304 4608 CTA 100% 2 1
FWT k6 1024 16384 CTA 100% 1 1
FWT k13 128 1024 CTA 100% 1 1
JPEG 512 1024 CTA 100% 1 1
KMN k1 121 968 CTA 100% 2 2
KMN k2 121 968 CTA 100% 2 2
LPS 128 512 CTA 0% 3 1
NN k4 1000 1000 CTA 100% 2 2
HotSpot 1849 14792 CTA 26% 2 2
BFS k3 20 320 CTA 90% 3 3
BFS k9 20 320 CTA 90% 3 3
BFS k11 20 320 CTA 85% 3 3
WC k114 512 2048 CTA 94% 2 2
WC k5 1 8 Warp 75% 2 2
WC k91 32 256 Warp 85% 5 2
SCP 128 1024 Warp 87.5% 4 1
SLA k256 8 64 Warp 87.5% 4 1
SLA k258 8 64 Warp 0% 1 1
MD k1 48 384 Warp 100% 1 1
MD k3 48 384 Warp 100% 1 1
Sort k8 512 4096 Warp 88% 2 1
Sort k20 512 4096 Warp 87.5% 2 1
Sort k24 512 4096 Warp 87.5% 2 2

3) Classification result and thread selection: We apply the
CTA-level and warp-level grouping method described above
to every benchmark kernel. Table III shows the classification

results. Column Grp. Level indicates the classification level,
i.e., CTA or warp. Recall that we only consider the warp level
for SCP-like benchmark kernels. Column # DI Grp. shows the
number of groups classified by the distribution of DIs in CTA
or warp, while Column % R-Grp points out the percentage
of regular groups (i.e., groups with low to no variance in DI
counts). Naturally, due to the simplicity in thread selection,
regular groups are preferable. Fortunately, we observe a signif-
icant percentage of regular groups in most benchmark kernels,
varying from 26% to 100% with an average of 82%. We also
explore the group-wise error resilience and further combine
groups that share similar resilience characteristics. Column #
ErrDist Grp indicates such refined group counts. More details
are given in Section IV.

k1 k1 k3 k1 k1 k1 k4 k1 k1 k5 k91 k114 k8 k20 k24 k6 k13 k1 k2 k3 k9 k11 k256 k258 k6 k70%

20%

40%

60%

80%

100%

PC
T.

 O
ut

pu
t

SortMD CONSWCNNHS LPSJPEG SLABFSBS FWT KMNSCPRAY

MSK
SDC-A
SDC-R
DDC
OTHER

Fig. 7. Distribution of fault injection outcomes at benchmark kernel level.
(SDC faults are evaluated with the default threshold values.)

Having determined the grouping level and strategy, the next
step is to select a limited number of threads per group for
fault injection runs. For regular groups, where all threads share
similar dynamic instruction counts, it is straightforward to
randomly select one thread per group. For irregular groups,
which contain a variety of different threads, we randomly
select a limited number of threads based on the frequency
of their DI counts.
Observation#1: Only a few groups of CTAs are different in
terms of the number of dynamic instructions they execute.
Observation#2: Only a few warps within the selected groups
of CTAs are different in terms of the number of dynamic
instructions they execute.
Observation#3: Hierarchical grouping is not sensitive to the
type or size of the input.

IV. HIERARCHICAL APPROACH TO
ERROR RESILIENCE CHARACTERIZATION

Having demonstrated the rationale and methodology for the
hierarchical thread classification and selection method, in this
section we characterize and analyze benchmark resilience.

A. Application Kernel Level Characteristics

We evaluate t resilience by computing the distribution of
fault injection outcomes, which is the percentage of each
type of fault (i.e., Masked, SDC-Accept, SDC-Reject, DDC,
and Others) among all fault-injection runs. We launch over
330K fault-injection runs, with an average of 10K runs per
kernel. In Section IV-D, we validate statistically that 10K runs
are sufficient to obtain the error resilience profile of GPGPU
applications.

1) Scope of accuracy-aware resilience: Figure 7 presents
the distribution of fault injection outcomes evaluated with the
default SDC threshold of every benchmark kernel listed in
Table I. Every stacked bar represents the fault distribution
of one benchmark kernel. The first impression is that for
all benchmarks, the majority of soft-errors are masked, i.e.,
they are imperceptible to the end user. The actual percentage
numbers of Masked faults vary from 31.8% in BlackScholes
to 100% in Sort k20, SLA k258, and CONS k7. For CONS k6,
there are very few non-masked faults (i.e., ≤ 1%), which
are barely visible in Figure 7. We check the number of loop
iterations in those benchmarks with close to 100% Masked
outputs and the low number (≤ 6) confirms that the results are
not biased due to sampling. Such a large portion of Masked
faults implies that the protection effort for these runs is perhaps
not necessary.

Secondly, we notice that the majority of the benchmark
kernels present a non-negligible percentage of SDC faults.
In previous works, these faults are deemed unacceptable but
users who embrace approximate computing may be willing
to trade corrupted output with lower resilience overhead and
better performance, as long as the “degree of corruption” is
within expected ranges. For this reason, we further divide the
SDC results into SDC-Accept and SDC-Reject. We observe
that benchmark kernels with a large portion of SDC faults
also exhibit a significant percentage of SDC-Accept faults.
Note that the fault distribution in Figure 7 is evaluated with
the application default threshold values. The percentage of
SDC-Accept is expected to increase when the benchmark is
evaluated with relaxed threshold values (see also Figure 1).
The percentage of SDC-Accept faults can be very high in
some benchmarks, such as 12.8% in RAY, 17.7% in HotSpot,
15.5% in FWT k6, 25.9% in FWT k13, and even 57.3% in
BlackScholes. In some other benchmarks (i.e., LPS, SLA, and
CONS), there are little to no SDC-Accept faults. Note also
that these benchmarks have a significant percentage (≥ 89%)
of Masked faults.

From the domain perspective, image processing applications
such as RAY and JPEG are resilient to soft-errors, as minor
changes in output images are barely distinguishable by the
end users. NN also digests single bit flips well. Those soft
errors slightly impact the weights of trained neural networks,
thus barely result in wrong outputs. In contrast, SCP and FWT
are more sensitive to soft errors, see the percentage of benign
faults (Masked and SDC-Accept) in Figure 7.

S L S L S L S L S L S L0%

20%

40%

60%

80%

100%

PC
T.

 O
ut

pu
t

MD KMN k1NN KMN k2HS RAY

MSK SDC-Accept SDC-Reject DDC OTHER

Fig. 8. Impact of Small and Large inputs on fault distribution.

2) Sensitivity to input size: To examine the impact of
different inputs on the resilience profile of an application,
we apply two choices of inputs, i.e., Small vs. Large, on

G1(R) G2(R)
(a)KMN k1

0%

20%

40%

60%

80%

100%
PC

T.
 O

ut
pu

t

G1(R) G2(R)
(b)KMN k2

G1(R) G2(IR)
(c)WC k114

G1(R) G2(R)G3(IR)
(d)RAY k1

G1(R) G2(IR)
(e)HS k1

G1(IR)G2(R)G3(IR)
(f)BFS k3

G1(IR)G2(R)G3(IR)
(g)BFS k9

G1(IR)G2(R)G3(IR)
(h)BFS k11

G1(R) G2(R)
(i)NN k4

G1(IR)G2(IR)G3(IR)
(j)LPS k1

MSK
SDC-A
SDC-R
DDC
OTHER

Fig. 9. Error resilience characteristics at CTA level. Each bar is distin-
guished by its group name and whether it is regular (R) or irregular
(IR).

five of the benchmark kernels, see Figure 8. For NN and
KMN k1, whose scope of SDC-Accept is negligible (i.e.,
≤ 1%), we observe high similarity in the fault distribution
when using different input sizes. For other benchmark kernels,
using a large input leads to a decrease in the percentage of
Masked faults, specifically to 4.1% for KMN k2, 0.3% for
MD, and 4.5% for HotSpot. Fortunately, for these kernels,
the percentage of SDC-Accept increases correspondingly with
large input, resulting in a similar scope of benign faults
comparing to the small case. KMN k2 is the only exception,
where the increase of SDC-Accept is less than the increase
of SDC-Reject. Moreover, for RAY, whose scope of Masked
faults is not impacted by the input size, the large input makes
the kernel more error resilient by having a larger percentage
(i.e., 6.6% more) of SDC-Accept faults.

Observation#4: There is an ample scope of SDC-Accept
faults in some GPGPU applications.
Observation#5: Using large input typically preserves or in-
creases the scope of resilience coverage, i.e., benign outputs.

B. CTA Level Characteristics

Consistent with the hierarchical classification at the CTA
level (see Section III), we perform fault injection runs for every
CTA group, in order to explore whether fault distributions vary
across different CTA groups.

In Table III, we show the number of CTA groups based
on the distribution of dynamic instructions in CTAs of the
benchmark kernel (see Column “# DI Grp”). We further
combine groups that share similar fault distribution and the
final number of groups is shown in Column “# ErrDist Grp.”.
Clearly, # ErrDist Grp. ≤ # DI Grp. We observe that for
BlackScholes, CONS, and LPS, all DI groups are combined
into one ErrDist group due to the similarity in the group fault
distribution. For BlackScholes, though there are two DI groups
(both regular), their average numbers of dynamic instructions
are very close (3135 and 3232), yielding to similar fault
resilience characteristics. The same applies to CONS. For LPS,
all its three DI groups are irregular, and although they have
different average number of dynamic instructions, the major
composite threads have the same dynamic instruction counts,
resulting in similar resilience characteristics.

Except for the three aforementioned benchmarks, the rest
of benchmark kernels share different fault distribution at the
CTA level. Figure 9 shows the stacked bar plots for the fault
distribution of every ErrDist group for 10 benchmark kernels
(others are not shown due to limited space). We observe
that the fault distribution can be significantly different among

ErrDist groups. First, the composition of fault distribution can
be different. In KMN k2, almost all soft errors are masked in
G1 while there is large portion of SDC-Accept, SDC-Reject,
and Other faults (i.e., 4.4%, 4.4%, and 10.2%, respectively) in
G2. Such observation also exists for KMN k1 and WC k114.
Second, for some other kernels, certain ErrDist groups can
have more percentage of SDC-Accept faults, including RAY
G2 and G3 (14.1% and 15.9%, respectively), HotSpot G2
(23.4%), and BFS k11 G1 (3.0%). Furthermore, NN k4 G1 and
BFS k11 G3 present a notable larger percentage of SDC-Reject
faults (16.9% and 8.2%, respectively), which have the potential
to be converted to acceptable output with relaxed threshold
values. In contrast, the difference between the fault distribution
of ErrDist groups in some benchmarks (e.g., BFS k3) can
be small, but the percentage of benign faults in their ErrDist
groups is high (≥ 85%).

In general, we observe that regular groups tend to have
a larger portion of benign faults than irregular ones. Fur-
thermore, if we only focus on Masked faults, which are by
definition always benign, the regular groups always have a
large portion as compared to irregular ones. For example, the
percentage of Masked faults in WordCount k114 is 93.1%
and 42.6% in regular G1 and irregular G2, respectively. In
HotSpot, the percentages are 96.9% in the regular group and
55.4% in the irregular one.

Observation#6: A significant percentage of CTA groups are
more resilient (i.e., have high percentage of SDC-Accept
outputs) than other groups.

C. Warp Level Characteristics

Previously, we show that CTA groups have distinct fault
distribution, especially when comparing regular with irregular
groups. Here, we are interested in whether such heterogeneity
persists in the warp level. We use the warp-level grouping
strategy (described in Section III) to classify warps within the
same CTA group. Figure 10 shows the fault distribution of
every warp-level DI group for SCP, Sort k24, WordCount k5,
and WordCount k91. For SCP (see Figure 10(a)), all four
DI groups share similar percentage of faults, while only G1
contains slightly more SDC-Accept outputs than the others.
Such similarity in the fault distribution among warp groups is
also observed for Sort k24 in Figure 10(b). Consequently, for
both kernels, there is only one ErrDist group.

For WordCount k5 and k91 (see Figure 10 (c) and (d), we
observe significant difference in error-resilience among warp
groups. Some groups (i.e., G1 for WordCount k5 and G1 and
G2 for WordCount k91) are more resilient to injected faults
than others. Recall that results in Figure 10 are evaluated with
default threshold values. By varying levels of thresholds (re-
sults are not presented here due to lack of space), we observe
that warp groups exhibit different sensitivity to the threshold
values. For SCP, all the warp groups increase the percentage
of SDC-Accept almost at the same amount as we relax the
SDC threshold values. In contrast, for WordCount k91, G5 is
more sensitive to relaxed threshold values (i.e., we observe an

G1(R) G2(R) G3(R) G4(IR)
(a)SCP k1

0%

20%

40%

60%

80%

100%

PC
T.

 O
ut

pu
t

G1(R) G2(IR)
(b)Sort k24

MSK SDC-A SDC-R DDC OTHER

G1(R) G2(IR)
(c)WC k5

G1(R) G2(R) G3(R) G4(R) G5(IR)
(d)WC k91

Fig. 10. Error resilience characteristics at warp level. Each bar is distin-
guished by its group name and whether it is regular(R) or irregular(IR).

30.0%

35.0%

PC
T.

 M
SK

65.0%
67.5%

PC
T.

 S
DC

10% 20% 30% 40% 50% 60% 70% 80% 90%
100%

Sampling PCT.

0.5%

1.0%

PC
T.

 O
TR

(a) BlackScholes

57.5%
60.0%
62.5%

PC
T.

 M
SK

35.0%

40.0%

PC
T.

 S
DC

10% 20% 30% 40% 50% 60% 70% 80% 90%
100%

Sampling PCT.

1.0%
2.0%

PC
T.

 O
TR

(b) SCP

Fig. 11. Changes in the percentage of faults with increasing sample size for
(a) BlackScholes and (b) SCP. PCT.MSK, PCT.SDC, and PCT. OTR indicate
the percentage of masked, SDC, and other (including DDC, crashed, and
hangs) faults, respectively. Error bars give the 95% confidence intervals.

increase in the percentage of SDC-Accept) comparing to other
warp groups.

Observation#7: Similar to CTA-level analysis, some warps
are more resilient than others.

D. Statistical Validation

We have shown the resilience characteristics for benchmarks
at the kernel, CTA, and warp levels. The vast parallelization of
the GPGPU applications makes the generation of all possible
fault sites not possible. To evaluate the statistical significance
of our result, for every benchmark kernel, we randomly sample
10% of the entire space of generated fault sites (10K for each
experiment) and gradually add 10% until we reach 100% (i.e.,
all generated sites). For every increment, we calculate the 95%
confidence interval. Figure 11 reveals resilience changes over
increasing the sample sizes. It is clear that the fault percentage
fluctuates significantly in the initial increments, indicating that
the sample space in insufficient to reach results of statistical
significance, but becomes steady after the sampling percentage
exceeds 80%. Moreover, we see significant overlaps across
the confidence intervals, which suggests that our experiments
do capture the “unknown” means of the fault distributions.
In fact, we observe that the average error margin is 1.27%,
0.75%, and 0.75% for the percentage of Masked, SDC, and
other faults (including DDC, crashes, and hangs), respectively
(see the ranges of the y-axes of the graphs in Figure 11). The
above results are consistent with the fact that 1K experiments
are enough to obtain 95% confidence intervals with 6%
error margins and 60K experiments are necessary for 99.8%
confidence intervals with 1.26% error margins, see [30] for
an overview.

V. USE CASE: REDUCING PROTECTION OVERHEAD

In this section, we leverage on the various observations of
our characterization study to improve on application resilience
while maintaining reduced overhead. We first discuss the trade-
off among the following metrics.

1) Resilience Coverage (RC) and Output Quality (OQ):
The perfect output quality refers to only accepting
Masked outputs. However, as shown in Section IV, there
exists a large scope of SDC-Accept outputs of GPGPU
applications. These tolerable outputs provide the opportu-
nity of improving the Resilience Coverage (RC), which is
defined as the percentage of runs with benign faults (i.e.,
Masked and SDC-Accept). Acceptable resilience coverage
is application and user dependent [44].

2) Overhead Reduction (OR): To improve GPGPU appli-
cation resilience, we consider a re-computation model
that computes the kernel again and compares its output
with the actual execution output for any anomalies. As a
baseline, we assume all CTAs of the kernel are vulnerable
(i.e., do not meet the Resilience Coverage requirement)
and hence need to be re-computed at the expense of
additional physical resources. In the worst case, these
resources are twice of the total resource required for the
actual computation.

We focus on how our accuracy-aware resilience charac-
terization can help in reducing the physical resource re-
quirements. For example, if our characterization shows that
50% of CTAs are not vulnerable, then only 50% additional
physical resources are required for re-computation. In the
remaining section, we consider two different output quality
(OQ) thresholds:

1) Perfect OQ: includes Masked outputs only.
2) Default OQ: includes Masked outputs and SDC-Accept

outputs (evaluated with default thresholds, see Table I).
Table IV shows the trade-off between resilience coverage and
re-computation overhead for different benchmark kernels. Un-
der “Kernel-Level”, the “Perfect OQ (OR)” column provides
resilience coverage and (protection overhead reduction) that
considers Perfect OQ while the “Default OQ (OR)” column
provides resilience coverage and (protection overhead reduc-
tion) that considers Default OQ. For some benchmark kernels,
we can further gain on overhead reduction by considering
thread groups at a finer granularity (see column “Default OQ
(OR)” under “CTA-/Warp-Level”.)
Coarse-grain Protection Overhead Analysis. We first show
analysis at the kernel level (see the two columns under
“Kernel-Level” in Table IV). We observe that resilience
coverage increases as we start to relax the output quality
requirement, which results in increasing overhead reduction
(OR). For BlackScholes, for example, the resilience coverage
is very low (31.8%) when users desire perfect output quality.
With such low resilience coverage, it is necessary to protect
the entire kernel (i.e., 0% overhead reduction). However, if
users are able to accept some inaccuracy in output (i.e., accept
the default output quality), the resilience coverage increases
to 89.1%. If this is agreeable with the user, then the re-
computation cost of the entire kernel can be avoided (i.e.,
100% overhead reduction).

In the remaining discussion, we assume a 85% resilience
coverage requirement set by the user, as many kernels satisfy
it at the default output quality threshold. For example, we

TABLE IV
RESILIENCE COVERAGE VS. OVERHEAD REDUCTION.

Kernel-Level CTA-/Warp-
Level

Benchmark Perfect OQ (OR) Default OQ (OR) Default OQ
(OR)

BlackScholes 31.8% (0%) 89.0% (100%) –
RAY 83.2% (0%) 96.0% (100%) –
Sort k8 81.5% (0%) 97.8% (100%) –
JPEG 76.1% (0%) 84.6% (0%) –
SCP 62.1% (0%) 71.6% (0%) –
FWT k6 36.0% (0%) 51.5% (0%) –
FWT k13 28.3% (0%) 54.2% (0%) –
HotSpot 66.2% (0%) 83.8% (0%) 99.6% (26%)
NN k4 89.6% (100%) 89.6% (100%) 91.9% (92%)
WC k5 87.9% (100%) 88.9% (100%) 96.6% (75%)
WC k91 94.9% (100%) 94.9% (100%) 100% (75%)
WC k114 89.8% (100%) 89.8% (100%) 93.4% (94%)
BFS k3 88.5% (100%) 88.5% (100%) 100% (100%)
BFS k9 84.9% (0%) 84.9% (0%) 86.1% (95%)
BFS k11 82.1% (0%) 83.9% (0%) 99.2% (90%)
KMN k1 82.2% (0%) 82.6% (0%) 100% (7%)
KMN k2 81.0% (0%) 85.4% (100%) 100% (7%)
* The resilience coverage requirement is set to be 85%.
* Kernels with no values in the fourth column only contain one fault distribution
group, thus are not applicable for fine-grain analysis.

find that for kernels such as RAY, Sort k8, and KMN k2, the
resilience coverage requirement of 85% is met and hence its
re-computation can be completely avoided leading to 100%
reduction in protection overhead by accepting Default OQ
instead the Perfect OQ. However, we also find that some other
kernels (see cells in bold in Table IV) do not meet the 85%
resilience coverage requirement even at the Default OQ. For
such kernels, we have to resort to fine-grain analysis to seek
opportunities of overhead reduction.

Fine-grain Protection Overhead Analysis. If the kernels do
not meet the resilience coverage requirement, the protection
overhead can still be reduced by exploiting the fact that some
CTAs or warp groups are significantly more error-resilient
than others (see Observations #6 and #7). We propose not
to re-compute such groups and hence reduce the associated
protection overhead. As CTAs are independent of each other,
output of only those CTAs will be required to be compared that
have lower resilience coverage. After applying our resilience
characterization (Section IV), we find that the resilience cover-
age has increased significantly for most kernels (see “Default
OQ (OR)” column under “CTA-/Warp-Level”) and still with
a significant overhead reduction. For example, for HotSpot,
at the CTA level, users can obtain 99.6% resilience coverage
while still reducing overhead by 26% (i.e., G1 in Figure 9(e)
can be protection-free). In addition, for kernels with over 85%
resilience coverage (i.e., NN k4, WC k5, WC k91, WC k114,
and BFS k3), it is still possible to further improve their
resilience coverage at a finer granularity (see fourth column).
Although the above analysis is for the 85% resilience coverage
requirement, similar analysis can be performed for any other
threshold.

Observation#8: Hierarchical error-resilience analysis offers
flexibility for resilience coverage and overhead reduction.

VI. RELATED WORK

There is a large number of studies that focus on leveraging
simulation-based analysis to detect critical hardware structures
that are more vulnerable to soft errors. Prior works [10],
[17] have conducted architectural vulnerability factor (AVF)
analysis, which tracks every bit during the application run
and calculates the likelihood of the output being affected.
Although there is a large body of work on fault injection
models/frameworks [4], [12], [13], [34]–[36], [39] in the
context of CPUs, only a limited set of fault injector models
have been proposed for GPUs [9], [14], [23], [30], [46], [47].
Yim et al. [47] build a source-to-source translator, SWIFI, to
investigate error resilience in GPUs and demonstrate that the
ratio of silent data corruption (SDC) in GPUs is much higher
than that observed in CPUs.

Prior works [9], [30], [46] use the number of dynamic
instructions (DI) per thread as a proxy for thread behavior.
The rationale is that threads with the same dynamic instruction
count are likely to execute the exact same set of instructions,
thus resulting in similar error resilience behavior. In this paper,
we typically put threads with the different DI count in the
same group based on additional hierarchical information (Sec-
tion IV-B). This allows higher overhead reduction compared
to GPU-Qin because vulnerable threads are encapsulated into
fewer CTAs, which then can be recomputed.

While the purpose of fault protection is to completely avoid
faults, approximate computing explores the trade-off between
accuracy, performance, and energy efficiency. Prior studies
have considered this trade-off in specific areas including
bioinformatics [16], [25], performance analysis [42], data
mining [26], and image recognition [24]. Approxilyzer [44]
has been proposed to evaluate the three-way trade-off among
output quality, resilience coverage, and overhead reduction.
It is built for single-threaded CPU applications and is not
clear how it can be extended for GPGPU applications with
thousands of threads and billions of fault sites.

VII. CONCLUSIONS

In this paper, we characterize the of accuracy-aware re-
silience of GPGPU applications. We propose a hierarchical
thread classification and selection approach to understand
the application resilience coverage. Through a large number
of fault injection runs (330, 000 in total) on a variety of
GPGPU applications, we obtain several interesting observa-
tions. First, the error resilience of GPGPU application kernels
can significantly increase by embracing some loss in output
quality. Second, the accuracy-aware error-resilience of a kernel
can be captured by analyzing threads of only a few thread-
blocks. Third, the proposed hierarchical approach facilitates
the overhead reduction of protection/recovery mechanisms to
ensure reliable output.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers.
This material is based upon work supported by the National
Science Foundation (NSF) grants (#1717532 and #1750667).

REFERENCES

[1] GP100 Pascal Whitepaper.
[2] NVIDIA Fermi Architecture Whitepaper.
[3] NVIDIA Kepler GK110 Architecture Whitepaper.
[4] L. N. Bairavasundaram. Characteristics, impact, and tolerance of partial

disk failures. ProQuest, 2008.
[5] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt.

Analyzing CUDA workloads using a detailed GPU simulator. In
Performance Analysis of Systems and Software, 2009. ISPASS 2009.
IEEE International Symposium on, pages 163–174. IEEE, 2009.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous computing,
2009.

[7] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf-
ford, V. Tipparaju, and J. S. Vetter. The scalable heterogeneous com-
puting (SHOC) benchmark suite. In Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units, pages
63–74. ACM, 2010.

[8] A. Eklund, P. Dufort, D. Forsberg, and S. M. LaConte. Medical image
processing on the GPU–past, present and future. Medical image analysis,
17(8):1073–1094, 2013.

[9] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi. GPU-Qin: A
methodology for evaluating the error resilience of GPGPU applications.
In Performance Analysis of Systems and Software (ISPASS), 2014 IEEE
International Symposium on, pages 221–230. IEEE, 2014.

[10] N. Farazmand, R. Ubal, and D. Kaeli. Statistical fault injection-based
AVF analysis of a GPU architecture. Proceedings of SELSE, 2012.

[11] R. Foster. How to harness big data for improving public health.
Government Health IT, 2012.

[12] S. Fu and C. Xu. Quantifying temporal and spatial correlation of failure
events for proactive management. In Reliable Distributed Systems, 2007.
SRDS 2007. 26th IEEE International Symposium on, pages 175–184.
IEEE, 2007.

[13] A. Gainaru, F. Cappello, M. Snir, and W. Kramer. Fault prediction under
the microscope: A closer look into HPC systems. In Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, page 77. IEEE Computer Society Press, 2012.

[14] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer.
SASSIFI: Evaluating resilience of GPU applications. In Proceedings of
the Workshop on Silicon Errors in Logic-System Effects, 2015.

[15] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: a
MapReduce framework on graphics processors. In Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, pages 260–269. ACM, 2008.

[16] R. K. Jena, M. M. Aqel, P. Srivastava, and P. K. Mahanti. Soft
computing methodologies in bioinformatics. European Journal of
Scientific Research, 26(2):189–203, 2009.

[17] H. Jeon, M. Wilkening, V. Sridharan, S. Gurumurthi, and G. Loh.
Architectural vulnerability modeling and analysis of integrated graphics
processors. In Workshop on Silicon Errors in Logic-System Effects
(SELSE), Stanford, CA, 2012.

[18] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T.
Kandemir, O. Mutlu, R. Iyer, and C. R. Das. OWL: cooperative thread
array aware scheduling techniques for improving GPGPU performance.
In ACM SIGPLAN Notices, volume 48, pages 395–406. ACM, 2013.

[19] J. Kim, M. Sullivan, and M. Erez. Bamboo ECC: Strong, safe, and
flexible codes for reliable computer memory. In 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), pages 101–112. IEEE, 2015.

[20] J. Kim, M. Sullivan, S.-L. Gong, and M. Erez. Frugal ECC: Efficient and
versatile memory error protection through fine-grained compression. In
High Performance Computing, Networking, Storage and Analysis, 2015
SC-International Conference for, pages 1–12. IEEE, 2015.

[21] D. B. Kirk and W. H. Wen-Mei. Programming massively parallel
processors: a hands-on approach. Morgan kaufmann, 2016.

[22] R. Koo and S. Toueg. Checkpointing and rollback-recovery for dis-
tributed systems. IEEE Transactions on software Engineering, (1):23–
31, 1987.

[23] G. Li, K. Pattabiraman, C.-Y. Cher, and P. Bose. Understanding error
propagation in GPGPU applications. In High Performance Computing,
Networking, Storage and Analysis, SC16: International Conference for,
pages 240–251. IEEE, 2016.

[24] J. Meng, S. Chakradhar, and A. Raghunathan. Best-effort parallel
execution framework for recognition and mining applications. In Par-
allel & Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on, pages 1–12. IEEE, 2009.

[25] S. Mitra and Y. Hayashi. Bioinformatics with soft computing. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 36(5):616–635, 2006.

[26] S. Mitra, S. K. Pal, and P. Mitra. Data mining in soft computing
framework: a survey. IEEE transactions on neural networks, 13(1):3–14,
2002.

[27] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers. A large-scale
study of soft-errors on GPUs in the field. In 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
519–530. IEEE, 2016.

[28] B. Nie, J. Xue, S. Gupta, C. Engelmann, E. Smirni, and D. Tiwari.
Characterizing temperature, power, and soft-error behaviors in data
center systems: Insights, challenges, and opportunities. In 2017 IEEE
25th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), pages 22–31.
IEEE, 2017.

[29] B. Nie, J. Xue, S. Gupta, T. Patel, C. Engelmann, E. Smirni, and
D. Tiwari. Machine learning models for GPU error prediction in a
large scale HPC system. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 95–106.
IEEE, 2018.

[30] B. Nie, L. Yang, A. Jog, and E. Smirni. Fault site pruning for practical
reliability analysis of GPGPU applications. In 51st Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 2018, Fukuoka,
Japan, October 20-24, 2018, pages 749–761. IEEE Computer Society,
2018.

[31] NVIDIA. Computational finance.
[32] NVIDIA. CUDA C/C++ SDK Code Samples, 2011.
[33] NVIDIA. Fermi: NVIDIA’s Next Generation CUDA Compute Archi-

tecture, 2011.
[34] A. Oliner and J. Stearley. What supercomputers say: A study of five

system logs. In Dependable Systems and Networks, 2007. 37th Annual
IEEE/IFIP International Conference on, pages 575–584. IEEE, 2007.

[35] A. Pecchia, D. Cotroneo, Z. Kalbarczyk, and R. K. Iyer. Improving
log-based field failure data analysis of multi-node computing systems.
In Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st
International Conference on, pages 97–108. IEEE, 2011.

[36] R. K. Sahoo, M. S. Squillante, A. Sivasubramaniam, and Y. Zhang.
Failure data analysis of a large-scale heterogeneous server environment.
In Dependable Systems and Networks, 2004 International Conference
on, pages 772–781. IEEE, 2004.

[37] B. Sangchoolie, K. Pattabiraman, and J. Karlsson. One bit is (not)
enough: An empirical study of the impact of single and multiple bit-flip
errors. In Dependable Systems and Networks (DSN), 2017 47th Annual
IEEE/IFIP International Conference on, pages 97–108. IEEE, 2017.

[38] I. Schmerken. Wall street accelerates options analysis with GPU
technology. Wall Street Technology, 11, 2009.

[39] B. Schroeder and G. Gibson. A large-scale study of failures in high-
performance computing systems. IEEE Transactions on Dependable and
Secure Computing, 7(4):337–350, 2010.

[40] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, et al. Addressing
failures in exascale computing. The International Journal of High
Performance Computing Applications, 28(2):129–173, 2014.

[41] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux, et al. Understanding
GPU errors on large-scale HPC systems and the implications for system
design and operation. In High Performance Computer Architecture
(HPCA), 2015 IEEE 21st International Symposium on, pages 331–342.
IEEE, 2015.

[42] H.-L. Truong and T. Fahringer. Soft computing approach to performance
analysis of parallel and distributed programs. pages 622–622. Springer,
2005.

[43] S. Tselonis and D. Gizopoulos. GUFI: A framework for gpus reliability
assessment. In 2016 IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS 2016, Uppsala, Sweden, April
17-19, 2016, pages 90–100.

[44] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve. Approxi-
lyzer: Towards a systematic framework for instruction-level approximate
computing and its application to hardware resiliency. In Microarchitec-
ture (MICRO), 2016 49th Annual IEEE/ACM International Symposium
on, pages 1–14. IEEE, 2016.

[45] W. Webber, A. Moffat, and J. Zobel. A similarity measure for indefinite
rankings. ACM Transactions on Information Systems (TOIS), 28(4):20,
2010.

[46] L. Yang, B. Nie, A. Jog, and E. Smirni. Practical resilience analysis of
GPGPU applications in the presence of single- and multi-bit faults. In
Transactions on Computers. IEEE, 2020.

[47] K. S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. Iyer. Hauberk:
Lightweight silent data corruption error detector for GPGPU. In
Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE
International, pages 287–300. IEEE, 2011.

[48] D. H. Yoon and M. Erez. Memory mapped ECC: low-cost error pro-
tection for last level caches. In ACM SIGARCH Computer Architecture
News, volume 37, pages 116–127. ACM, 2009.

[49] D. H. Yoon and M. Erez. Virtualized and flexible ECC for main memory.
In ACM SIGARCH Computer Architecture News, volume 38, pages 397–
408. ACM, 2010.

