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ABSTRACT
Value prediction holds the promise of significantly improving the
performance and energy efficiency. However, if the values are pre-
dicted incorrectly, significant performance overheads are observed
due to execution rollbacks. To address these overheads, value ap-
proximation is introduced, which leverages the observation that
the rollbacks are not necessary as long as the application-level
loss in quality due to value misprediction is acceptable to the user.
However, in the context of Graphics Processing Units (GPUs), our
evaluations show that the existing approximate value predictors
are not optimal in improving the prediction accuracy as they do
not consider memory request order, a key characteristic in deter-
mining the accuracy of value prediction. As a result, the overall
data movement reduction benefits are capped as it is necessary to
limit the percentage of predicted values (i.e., prediction coverage)
for an acceptable value of application-level error.

To this end, we propose a new Address-Stride Assisted Approxi-
mate Value Predictor (ASAP) that explicitly considers the memory
addresses and their request order information so as to provide high
value prediction accuracy. We take advantage of our new obser-
vation that the stride between memory request addresses and the
stride between their corresponding data values are highly corre-
lated in several applications. Therefore, ASAP predicts the values
only for those requests that have regular strides in their addresses.
We evaluate ASAP on a diverse set of GPGPU applications. The
results show that ASAP can significantly improve the value pre-
diction accuracy over the previously proposed mechanisms at the
same coverage, or can achieve higher coverage (leading to higher
performance/energy improvements) under a fixed error threshold.
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1 INTRODUCTION
Graphics Processing Units (GPUs) are capable of providing very
high peak throughput and memory bandwidth at a competitive
power budget [9–11, 43, 45]. However, continuous scaling of GPU
performance and energy efficiency is challenging primarily because
of the high system energy consumption [12] caused by excessive
data movement across different levels of the memory hierarchy,
and limited memory bandwidth. To address these bottlenecks, pre-
vious works have proposed several techniques such as data com-
pression [42], warp scheduling for better cache and memory per-
formance [8, 9, 11, 32], and cache management [30, 31]. Another
promising strategy for reducing data movement is value prediction,
whereby the values are not necessarily required to be fetched from
memory as they can be predicted at the core. In the context of CPUs,
previous techniques [3, 4, 17, 26–28, 38, 39] used to both predict
and fetch the data. The predicted values are later compared with
the fetched values. If the prediction turns out to be correct, the data-
dependent stall cycles are reduced significantly. However, in the
case of a misprediction, the execution is rolled back leading to the
flushing of the dependent instructions in the pipeline. Such perfor-
mance and data movement overheads are the critical impediments
towards leveraging the benefits of value prediction. To address the
challenges of precise value prediction, recent research has explored
approximate value usage [13, 20, 35, 36, 44, 45], which leverages
the observation that for approximable applications the requirement
of rollbacks can be omitted as long as the application-level loss in
quality is within an acceptable range.

While rollback-free value approximation has received signifi-
cant attention in the context of CPUs [13, 20, 35, 36, 41], only a few
works have explored it in the context of GPUs [44, 45]. Applica-
tion execution in GPUs relies on multi-threading, where associated
threads are scheduled on GPU cores at the granularity of warps,
where a warp usually consists of 32 threads. Each load instruction
in a warp can generate one or more cache block request depending
on how well the data is coalesced across threads within the warp.
As hundreds of warps can concurrently execute and cache sizes in
GPUs are much smaller than CPUs [22], data movement between
caches and memory is a serious performance and energy efficiency
bottleneck [8, 9, 11, 42]. If values of these requests can be correctly
predicted at the core, the data movement and stall cycles can be
significantly reduced thereby improving latency tolerance, perfor-
mance, and energy efficiency. However, if the predictor predicts
incorrectly, each mispredicted cache line leads to a certain level
of quality loss in the application’s final output. This quality loss is
dependent on many factors such as the prediction coverage (defined
as the ratio of predicted load requests to the total load requests), the
magnitude of error in value prediction, and the error resilience of
instructions that use erroneous values as their operands. Therefore,
if values can be predicted more accurately, higher coverage can be
applied for better performance and energy efficiency.
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The goal of this paper is to improve the accuracy of value predic-
tion in GPUs. One of the major challenges in achieving this goal is
to identify the value stride pattern(s) in a highly multi-threaded en-
vironment where thousands of memory requests can be on-the-fly
and their access order is highly dependent on GPU-specific fea-
tures such as warp scheduling and coalescing. Previous works for
CPUs used large per-thread prediction tables to achieve high accu-
racy [21, 37, 40]. However, it can become prohibitively expensive
to apply those approaches directly to the highly multi-threaded
environment in GPUs [45]. To address this problem, we take ad-
vantage of our key new observation that consideration of memory
addresses and the relationship with their value strides is effective
for providing high value prediction accuracy. Specifically, we find
that for many realistic inputs used by GPGPU applications, particu-
lar address strides have linear correlations with their value strides.
For example, Figure 1 shows that for the extracted pixels, an address
stride of 1×data_size correlates to a value stride of −1. Meanwhile,
an address stride of 1×row_size correlates to a value stride of 1.

Figure 1: Pixel values of consecutive row and column positions.

Based on this new observation, we propose an Address-Stride
Assisted Approximate Value Predictor (ASAP), which predicts the
values only if it detects strides in their corresponding addresses.
Each entry in the ASAP prediction table carefully keeps track of
one type of address stride and their corresponding value stride.
We find that as the number of address stride patterns in typical
GPGPU applications is usually limited, the number of prediction
table entries is significantly reduced, thereby making it area and
power-efficient (Section 4). We also show that ASAP remains effec-
tive even under different address patterns, which can be influenced
by warp scheduling and coalescing (Section 6).

To the best of our knowledge, this is the first work that shows
that there is a high correlation between address stride and value
strides in several GPGPU applications and this observation can
be used to design an efficient GPU-specific value predictor. Our
simulation results across a set of diverse GPGPU applications show
that ASAP can significantly improve the prediction accuracy over
the state-of-the art GPU value predictor while providing high per-
formance improvement (up to 40%) and energy reduction (up to
30%). Specifically, the previously proposed RFVP-style value pre-
dictor [45] incurs 3.48% (up to 40.08%) and 8.10% (up to 63.59%)
Application Error, at 10% and 20% coverage, respectively. In con-
trast, under a similar area budget, our ASAP predictor produces on
average only 0.26% and 0.43% Application Error, respectively.

2 BACKGROUND
This section provides background on the GPU architecture followed
by details of the existing value prediction techniques in GPUs.

2.1 Baseline Architecture and Metrics
Figure 2 shows the baseline GPU architecture consisting of cores
(also known as Streaming Multi-processors (SMs)) and memory
partitions. Each core has its private L1 cache and the L1 cache is
connected to a slice of L2 cache via an on-chip interconnect. The
L2 cache is further connected to the off-chip GPU memory. We
assume each SM is also attached to a value predictor (VP). We
simulate our baseline architecture using a cycle-level simulator –
GPGPU-Sim [1] and faithfully model all key parameters (Table 1).
The energy measurements are gathered using GPUWattch [15].
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Figure 2: Baseline GPU Architecture with a value predictor.

Table 1: Key configuration parameters of the simulated GPU config-
uration. See GPGPU-Sim v3.2.2 [5] for the full list.

Core Features 1400MHz core clock, 30 SMs, SIMT width = 32 (16 × 2)
Resources / Core 32KB shared memory, 32KB register file

Up to 1536 threads (48 warps, 32 threads/warp)
L1 Caches / Core 16KB 4-way L1 data cache

12KB 24-way texture cache, 8KB 2-way constant cache,
2KB 4-way I-cache, 128B cache block size

L2 Cache 8-way 128 KB/memory channel (768KB in total)
128B cache block size

Features Memory coalescing and inter-warp merging enabled,
immediate post dominator based branch divergence handling

Memory Model 6 GDDR5 Memory Controllers (MCs)
FR-FCFS scheduling, 16 DRAM-banks, 4 bank-groups/MC,
924 MHz memory clock Global linear address space is
interleaved among partitions in chunks of 256 bytes
Hynix GDDR5 Timing [6], tCL = 12, tRP = 12, tRC = 40,
tRAS = 28, tCCD = 2, tRCD = 12, tRRD = 6, tCDLR = 5, tWR = 12

Interconnect 1 crossbar/direction (30 SMs, 6 MCs),
1400MHz interconnect clock, islip VC and switch allocators

Evaluation Metrics. We summarize the metrics evaluated in this
paper with the help of Figure 2. Coverage is the ratio between
Prediction Count C (i.e., cache lines that are predicted and not sent
to the lower level) and L1 Read Requests A . Since the number of
L1 Read Requests is constant for an application, the prediction
accuracy across different predictors can be compared at the same
coverage. Miss Match Rate (MMR) is the maximum achievable ratio
between Prediction Count C and L1 Read Misses B . The prediction
quality is measured in terms of Application Error, which is defined
as the average relative error between the output of the approximate
version and the baseline accurate version of an application.
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2.2 Baseline Value Predictors
Figure 2 (right side) shows the general structure of the value pre-
dictor and its operation. The value prediction works concurrently
with the cache access. We rely on user-supplied annotations to
identify approximable instructions (more details are in Section 4.4).
When a load request is issued from the core, its information (e.g.,
address, program counter (PC), Warp ID (WID), a bit to indicate
floating-point vs. integer value (FP/INT), user-supplied annotation,
memory space) is passed to the predictor. If the cache access results
in a miss, a miss signal is generated to inform the value predictor.
If the value predictor is able to predict the associated cache line,
it will: a) issue a drop signal to inform the MSHR to not send the
cache request to the lower level of the hierarchy, and b) fill the L1
cache with the predicted data. Whenever the L1 cache is filled with
a request fetched from the lower level of memory, it will be sent to
the value predictor for training and update (see Section 4.1).

Our baseline value predictor is based on rollback free value pre-
dictor (RFVP) for GPUs [45]. RFVP takes advantage of the prediction
tables implemented in the hardware to track the patterns in the
data values. Specifically, RFVP uses a hash of Warp ID and PC to
map different requests to particular entries in the prediction table.
The prediction is performed at a granularity of the memory access
size (typically 4 bytes) of a thread. However, as the prediction of
all the words in a cache line is desired, the observation of intra-
warp value similarity is used to predict values within the cache
line. Our baseline predictor has two sub-predictors [45]. The first
sub-predictor is responsible for predicting the first word, which is
then copied to the first half of words (words 1 to 15). Similarly, the
second sub-predictor is used for the second half (words 17 to 31).
The following discussion provides the necessary background on
two different RFVP-style baseline predictors.

....
word 0-15 word 16-31

Value 
Base0

Hash 
Fn

PC

Warp ID

Value 
Stride1

Value 
Base16

Value 
Stride2

(a) One Stride Predictor (OSP)
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(b) Two Stride Predictor (TSP)

Figure 3: Design of the baseline value predictors.

RFVP-Style One Stride Value Predictor (OSP). Figure 3(a)
shows the design of OSP, which uses a hash function [45] based on
PC and Warp ID to map requests to entries in the prediction table.
Each cache line is predicted with two one-stride sub-predictors.
The predicted value of word 0 (which is later copied to words 1
through 15) is the sum of ValueBase0 and ValueStride1 ( 1 ). Simi-
larly, the predicted value of word 16 (which is later copied to words
17 through 31) is the sum of ValueBase16 and ValueStride2 ( 2 ).

Before prediction, both sub-predictors need to be trained. For
the training, at least two successive cache lines are needed from the
main memory. ValueBase0 is updated by the word 0 of the second
cache line and ValueStride1 is updated to the difference between
the word 0 of the second cache line and the first cache line. The
same process is repeated for ValueBase16 and ValueStride2 of the
second sub-predictor with word16 (instead of word0) of the two
successive cache lines. To control the accuracy, data is periodically
fetched from the main memory to update the base and stride values.

RFVP-Style Two Stride Value Predictor (TSP). Figure 3(b)
shows the design of TSP, which uses the same hash function as
OSP. However, the cache line is predicted with the help of two
two-stride sub-predictors. The prediction process of TSP is similar
to OSP. The predicted value of word 0 (which is later copied to
words 1 through 15) is the sum of ValueBase0 and ValueStride1 ( 1 ),
and the predicted value of word 16 (which is later copied to words
17 through 31) is the sum of ValueBase16 and ValueStride2 ( 2 ). The
training process of TSP is different from OSP only regarding how
the stride is calculated. For the training, at least three cache lines
are needed from the memory. With three successive cache lines,
ValueBase0 is updated by the word 0 of the third cache line, and
the ValueStrideA is updated to the difference between the word
0 of the third and the second cache line. ValueStride1 is updated
to the value of ValueStrideA only if ValueStrideA also equals the
difference between the word 0 of the second and the first cache
line, otherwise, the sub-predictor is considered to be not trained.
The second sub-predictor adopts the same process for the values
of ValueBase16 and ValueStride2. The training process stops when
both ValueStride1 and ValueStride2 are found. Again, the accuracy
can be controlled by periodically fetching data from the memory.

3 MOTIVATION AND ANALYSIS
In this section, we first analyze the relationship between address
and value strides in the inputs of GPGPU applications, followed
by a discussion on how this relationship helps in improving the
accuracy of the value prediction.

3.1 Analysis of Address and Value Strides
We find that a wide range of GPGPU workloads work on inputs
that have regular values strides (also discussed in Section 1). In
general, we observe that a large number of nearby pixels in the
image are similar or have gradually changing grayscales leading
to regular value strides. To validate this observation, we picked a
series of images including the commonly used standard test images
to analyze the correlation between their address strides and value
strides. Figure 4 shows the average absolute value strides with
increasing address strides for all pixels in each image. For example,
for the address stride of 1, the corresponding average absolute
value stride is the average absolute value difference between every
two pixels with consecutive addresses. The unit of the address
stride is the size of the data type used. Specifically, Figure 4(a)
shows how the average value stride changes along the row of the
image. Meanwhile, Figure 4(b) shows how the average value stride
changes along the column of the image. As we can observe from
the two figures, different images show different extent of linear
correlations. Overall, the smaller the address stride, the more linear
the correlation. Specifically, for the value strides of the next three
nearby pixels (i.e., on the left of the red dashed line) both row-wise
and column-wise, all images show nearly constant slopes between
their address strides and value strides.

3.2 Motivation
We find that the observation of linear correlation between address
stride and value stride can help to improve the accuracy of value
prediction in GPUs. Consider an illustrative example shown in Fig-
ure 5. Assume that three cache line requests are generated from
three different warps with addresses 0,1,2 and values 0,2,4, respec-
tively ( A ). Therefore, the address stride and value stride are linearly
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(a) Addresses are incremented row-wise.
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(b) Addresses are incremented column-wise.
Figure 4: Illustrating the relationship between average value stride of data with different address strides for a variety of inputs.
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Figure 5: Illustrative example showing the importance of request
order on value strides and the ease of value predictability.

correlated. However, these requests can be generated in different
orders based on the warp scheduling policy in a GPU. Consider two
possibles address sequences: Sequence I (0,1,2) ( B ) and Sequence II
(0,2,1) ( C ), as shown in Figure 5.

In the first sequence, OSP is trained with the first two accesses.
It can accurately predict the third value for Sequence I because the
predicted value stride conforms with the actual stride. However, if
the predictor is trained with Sequence II, a large relative error is
detected because the calculated stride is incorrect. Hence, if a new
value predictor is able to take advantage of the address and value
stride correlation, then it is able to generate an approximation with
better quality for imageswith similar attributes as shown in Figure 4.
Meanwhile, the same data movement reduction and performance
improvements are also achieved (Section 6).

To confirm this intuition, we analyzed a variety of real GPGPU
applications1. Our profiling analysis examines the value strides
by calculating the average stride difference between every two
consecutive observed value strides. For example, if the values of
three consecutive loads are V1, V2, V3, we examine the difference
between (V2-V1) and (V3-V2). A smaller stride difference means
that strides are more regular and hence it is easier to predict the
values of future loads. As the value of stride difference is dependent
on the load access order, we measure it on a simulated baseline GPU
architecture (Section 5) under three scenarios. Note that we use the
first 4B of cache lines accessed by load instructions to determine
value strides. First, the stride difference is calculated from the loads
belonging to the same PC and are generated as determined by the

1More details on the application characteristics/inputs and evaluation methodology
are discussed in Section 5.

baseline GTO warp scheduler. Such a scenario mimics a PC-based
value predictor that only considers value patterns of loads that
have the same PCs (i.e., PC-Based). Second, the stride difference is
calculated from loads that do not necessarily belong to the same
PC but their addresses have regular strides (i.e., Address-Stride-
Based). Third, as indicated in Figure 4 that nearby data tend to
show stronger address and value stride correlation, we use the
same design as in the second scenario but restrict the address stride
to accept the closest data only for each application depending on
their inputs (i.e., Address-Stride-Based-Restricted). The selection
process of the restricted address stride is described in Section 5.2.
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Figure 6: Normalized Stride Difference (in log scale) between con-
secutively observed value strides. Considering address-stride-based
(2nd and 3rd bar) improves the value predictability over traditional
PC-based approach (1st bar).

Figure 6 shows the normalized results for these scenarios: PC-
based, Address-Stride-Based and Address-Stride-Based-Restricted,
respectively. We observe that in the second scenario where the
address strides are considered, the average stride difference is much
lower. This indicates that consideration of memory addresses with
regular strides can facilitate detecting regularities among value
strides. In the third scenario, the average stride difference is even
lower, as the average stride difference of many applications even
reach 0. This confirms our observation in Figure 4. However, this sce-
nario requires the user to specify an acceptable address stride. Con-
sidering that the Address-Stride-Based scenario already provides
good improvements, we propose Address-Stride Assisted Value Pre-
dictor (ASAP) with the default mode and also evaluate the restricted
mode for comparison purposes.

4 DESIGN AND OPERATION
In this section, we describe the design and operation of ASAP via
answering the following these high-level questions: 1) How do we
recognize the patterns in the memory address stream and leverage
them for improving the accuracy of value prediction? 2) How do we
handle irregular memory access orders? and 3) How do we ensure
the design of the value predictor to be area-efficient?
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4.1 Design of ASAP
Overview. The Address-Stride Assisted Value Predictor (ASAP)
provides two modes: default mode and restricted mode. Both of
them have the same operations and working sequence except that
the restricted mode only accepts user-defined address strides. For
this reason, we do not differentiate them when introducing the de-
sign of ASAP. Figure 7 shows the overall design of ASAP that is built
upon the baseline predictor as described earlier in Section 2.2. There
are two major changes associated with ASAP. First, ASAP does not
rely on the PC or Warp ID based tags or hash functions but uses
the address of the memory requests to map them to the prediction
table entries. Second, each prediction table entry is appended with
additional fields containing the information of AddressBase (i.e.,
Cache Block Index) and AddressStrides ( 1 ) to facilitate in predict-
ing the strides in the memory addresses. The key idea behind these
changes is to identify and then leverage address patterns in the
memory requests in order to facilitate value prediction. If the next
address is predicted correctly, only then its corresponding value can
be predicted. Essentially, we treat each entry of the prediction table
as a holder for a certain kind of address pattern in the access stream.
As we observe that the types of different address stride patterns
in GPGPU applications are limited, we find that eight entries are
sufficient (sensitivity studies are discussed in Section 7).

ASAP has two versions: ASAP-OSP and ASAP-TSP, based on the
type of sub-predictor it employs. For brevity, we only discuss the
design of ASAP-OSP (Figure 7) as it captures all the design issues
of ASAP-TSP. We use the same entry to store either floating-point
or integer data and use 1 bit (FP/INT bit) to differentiate between
them. The FP bit also indicates whether floating-point adders or
integer adders should be used.
The Prediction Process. In order to track various stride patterns
in the memory access stream, we use two types of AddressStride
fields: AddressStrideShort and AddressStrideLong. For tracking the
strides in the value stream we use two types of ValueStride fields:
ValueStrideShort and ValueStrideLong. If the incoming address
equals to (i.e., the address matches) the sum of AddressBase and
AddressStrideShort or AddressStrideLong ( 2 )), then its value can
be predicted. We define such a situation as a match ( 3 ). For exam-
ple, if an entry has AddressBase 2, AddressStrideLong 2, and Ad-
dressStrideShort 1, then the entry is able to match the next request
with address 3 or 4. Once a match is detected and if the address is
correctly predicted using AddressStrideShort or AddressStrideLong,
then the value of word0 is predicted with the sum of ValueBase0 and
ValueStrideShort1 or ValueStrideLong1 ( 4 ), which is later copied
to words 1 through 15. The value of word16 is predicted with the
sum of ValueBase16 and ValueStrideShort2 or ValueStrideLong2
( 5 ), which is later copied to words 17 through 31. After each predic-
tion, AddressBase is updated to the matched address. ValueBase0
and ValueBase16 are updated to the predicted values of word0 and
word16, respectively.
TheTraining Process. Before prediction, an entrymust be trained.
Each entry is responsible for tracking different address stride pat-
terns in the access stream and is trained with at least two memory
requests. For a sequence of requests, AddressBase will be set to
the last address that accessed the entry. AddressStrideShort will
be set to the difference between the two most recent addresses. A
third request is required to train AddressStrideLong as it is the sum
of the most recent two AddressStrideShort values. Therefore, the
training is based on the last three requests mapped to the entry.
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Figure 7: Design of the Address-Stride assisted value predictor.

For example, let us assume that addresses 1, 2, 4 will consecutively
update an entry. After the 2nd address comes, AddressBase will be
2, AddressStrideShort will be 1 (2-1), and AddressStrideLong will
remain unchanged. After the 3rd address comes, AddressBase will
be 4, AddressStrideShort will be 2 (4-2), and AddressStrideLong
will be 3 (1+2). During an entry’s training phase, we also create
and update a new entry with the 2nd and 3rd requests of that entry.
This step is performed to warm-up new entries for faster matching.
New entries are created based on least recently used policy.
The Matching Process. At the first match of an entry, it leaves its
training phase (i.e., it is trained) and enters the prediction phase.
The value of AddressStrideShort will be set to the chosen stride
(Short or Long) and the value of AddressStrideLong will be set to
twice the value of AddressStrideShort in order to capture missing in-
termediate addresses as we will discuss in Section 4.3. Similarly, the
corresponding Value-Stride (ValueStrideShort or ValueStrideLong)
will be assigned to ValueStrideShort, and the ValueStrideLong will
be twice the value of ValueStrideShort. Subsequently, the values
of AddressStrideShort and AddressStrideLong will remain fixed
during the lifetime of the entry. Note that before an entry is trained,
StrideLong is not necessarily equal to the twice of StrideShort, as
mentioned in the training process.
The Updating Process. When an L1 Miss is not predicted, the
fetched cache line is used to update the AddressBase, Value-
Base, ValueStrideShort, and ValueStrideLong of the matched en-
tries to increase the accuracy of future predictions, while the Ad-
dressStrideShort and AddressStrideLong remain unchanged. The
ratio of prediction and update is controlled by the desired coverage
that a user can specify. Hence, the predictor will predict only if the
desired coverage has not been reached. Both the prediction and the
update can only happen in a matched entry. To ensure the updates
are evenly distributed, we predict and update in a fine-grained
manner. For example, 50% coverage can be achieved by doing 5
consecutive predictions followed by 5 consecutive updates.

Note that there should be at least 2 consecutive updates for
ASAP-OSP and 3 for ASAP-TSP in order to update the value strides
in their corresponding sub-predictor (Section 2.2). When an update
or a prediction request comes to the predictor, entries are checked
one by one to see if there is a match in any of the entries. We
find that this small extra latency does not affect the performance
benefits obtained from dropping the request. The match for Ad-
dressStrideShort and AddressStrideLong inside each entry happens
in parallel. If no match is found, we replace an old entry with a new
entry based on LRU policy and start its training phase.
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Figure 8: Operation of ASAP and its advantages over OSP. The
matched addresses, predicted values, relevant strides are shaded.

4.2 Operation of ASAP
Figure 8 illustrates the operation of ASAP-OSP and its advan-
tages over RFVP-Style-OSP by considering a sequence of addresses
(0,1,2,4,3,5). The corresponding data values are shown in boxes next
to each other ( A ). In this example, we assume that the address
sequence is generated from the same PC. When RFVP-Style-OSP is
employed ( B ), the first two requests train the entry. After training,
ValueBase is 2 and ValueStride is 2. The third request is correctly
predicted because its value is the sum of ValueBase and ValueStride.
However, the values of fourth and fifth memory requests are in-
correctly predicted because the ValueStride of 2 does not correctly
capture the value pattern. However, the value of the sixth request
is correctly predicted as it matches with the sum because the Value-
Base was still being updated even when the predictions were wrong.
Overall, the coverage is 66% (4 out of 6 requests are predicted) and
accuracy is 50% (2 out of 4 predictions are accurate).

In the case of ASAP-OSP ( C ), AddressBase, AddressStrideShort,
and AddressStrideLong are responsible for detecting strides in
the addresses. After the first two accesses, AddressBase and Ad-
dressStrideShort are trained in addition to ValueBase and Val-
ueStrideShort. As the third address is the sum of AddressBase and
AddressStrideShort, it implies that there is a match and its cor-
responding value can be predicted. We observe that ASAP-OSP
can correctly predict its value as its sum is equal to ValueBase
and ValueStrideShort. At this point, AddressStrideLong and Val-
ueStrideLong are also set as equal to twice of AddressStrideShort
and ValueStrideShort, respectively. The fourth address is also a
correct match as the sum of AddressBase and AddressStrideLong
matches with the predicted address. Therefore, its value can be
predicted using the sum of ValueBase and ValueStrideLong, which
is also correctly predicted. The fifth request is not predicted because
its address does not match the pattern in the addresses (Addr 3 is
neither equal to the sum of AddressBase and AddressStrideShort
nor AddressBase and AddressStrideLong). Finally, the sixth request
can be correctly predicted as its address pattern can be captured
via AddressStrideShort. Overall, the coverage is 50% (3/6 requests
are predicted) and accuracy is 100% (3/3 predictions are accurate).
In summary, as opposed to the RFVP-Style-OSP, ASAP-OSP can
take advantage of the readily available address information and
improve the accuracy significantly by trading-off coverage.

4.3 Use Cases of ASAP
For the address sequences which are generated from the core, we
find that there are two possible cases which can make them difficult
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Figure 9: Working steps of ASAP in Scenario I: Regular Address Pat-
tern. The address stream considered is: 0, 1, 2, 3, 10, 11, 12, 13. The
matched addresses and relevant strides are shaded.

to be captured. The first case is that in an address sequence with
a particular stride some of the intermediate addresses are missing.
The second case is that multiple address sequences are interleaved
together leading to a complicated address sequence. Our ASAP
design takes these two cases into consideration and we will also
evaluate its effectiveness with real applications later in Section 7.
To help understand how ASAP can capture different kinds of strides
in the addresses, we present three scenarios.
Scenario I: Regular Address Pattern – Demonstrating the
utility of multiple entries. Consider a scenario when consec-
utive address sequences: (0, 1, 2, 3) and (10, 11, 12, 13) are gener-
ated back to back. Figure 9 shows the values of AddressBase, Ad-
dressStrideShort, and AddressStrideLong for each entry. For brevity,
we only show the first three entries that are relevant for this ex-
ample. After the first two addresses are mapped to the first entry
(Entry0), the remaining addresses of the sequence (2,3) are matched
as they belong to the same stride pattern (AddressStrideShort of
Entry0 is set to 1). Note that AddressStrideLong is set to twice of
AddressStrideShort and the next Entry (Entry1) is also prepared in
anticipation of other possible patterns in the addresses by setting
the AddressBase to be 2 and AddressStrideShort to be 1.

When the second sequence of addresses arrive at the predictor,
the first address (10) among them cannot be matched by Entry0
because neither the sum of AddressStrideShort or AddressStride-
Long with AddressBase matches with the address. Therefore, it
will be mapped to Entry1. AddressStrideShort is set to 8 (10-2)
and AddressStrideLong becomes the sum of the previous two Ad-
dressStrideShort (8+1) for Entry1. After Entry1 is trained with 3
requests, it cannot match the next address 11, so again 11 is put
into a new entry (Entry2). The Entry2 is trained with 2, 10, 11 and
is able to match remaining addresses of the sequence (12,13).
Scenario II: Interleaved Address Pattern – Demonstrating
the utility of AddressStrideLong. The interleaved address pat-
tern may be caused by the interleaved execution of two warps, or
by the poorly coalesced requests from certain load instructions. For
example, one warp generates addresses (1, 2), another warp gener-
ates (4, 5), and so on. Figure 10 demonstrates such a sequence: (1, 2,
4, 5, 7, 8, 10, 11). For Entry0, it is trained with three addresses 1, 2, 4.
Also, 2, 4 are copied to Entry1. For the next address 5, since Entry0
has reached its maximum training count of 3, it can only be put into
Entry1 which still has 1 slot for training. At this point, both Entry0
and Entry1 have AddressStrideLong equal to 3. So when address 7
comes, it matches with AddressStrideLong in Entry0. The next ad-
dress 8 also matches with AddressStrideLong in Entry1. Addresses
10, 11 can also be matched with Entry0 and Entry1, respectively.
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Figure 10: Working steps of ASAP in Scenario II: Interleaving Ad-
dress Pattern. The addresses considered are: 1, 2, 4, 5, 7, 8, 10, 11.
The matched addresses and relevant strides are shaded.
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Figure 11: Working steps of ASAP in Scenario III: Missing Interme-
diate Address Pattern. The addresses considered are: 0, 1, 2, 3, 5. The
matched addresses and relevant strides are shaded.

Scenario III: Missing Intermediate Address Pattern. We
present an example of handling a missing intermediate address in
a consecutive address sequence. The missing intermediate address
pattern may be caused by the non-consecutive scheduling of warps
or control divergence. Figure 11 demonstrates such case with a se-
quence: (0, 1, 2, 3, 5). After 0, 1, 2 are mapped to Entry0, it is trained
with the value of AddressStrideShort to be 1 and AddressStrideLong
to be 2. Hence, after address 3 is matched, it can match address 5
from the AddressBase 3 directly using AddressStrideLong. Without
the AddressStrideLong, we would not have matched with address
5, thereby limiting the coverage.

4.4 Output Quality Control
The rollback-free value prediction eliminates pipeline rollbacks,
which is prohibitively expensive in GPUs. However, it also intro-
duces errors in GPU pipelines. These errors lead to different types
of consequences if no restrictions are enforced to control them.
First, the application may crash or lead to an unknown behavior if
errors are generated for critical values. For example, an incorrect
PC or address value will likely cause a fatal error. Second, the appli-
cation’s execution trace can become vastly different and produces
unexpected results if errors are generated for values involved in
conditional branching. For example, an incorrect counter in a for
loop can produce unusual results in an application’s output. Third,
the application’s output can lose a certain level of quality. For ex-
ample, some mispredicted values in an input matrix may cause a
certain level of distortion to an application’s output. In this case,
the level of quality loss depends on: a) the accuracy of the individ-
ual predictions, b) the number of values predicted (i.e., prediction
coverage), and c) the future operations that will be applied to these
predicted values.

ASAP guarantees that only limited output quality loss can hap-
pen by requiring the programmer’s annotations of approximable

load values and taking the input of prediction coverage values.
The compiler is also slightly modified to accept these additional
directives to facilitate value approximation. For example, as shown
in Listing 1, 10% prediction coverage is specified by the fetch and
predict ratio of 9 to 1. The programmer has also indicated to ap-
proximate the value of vector B in the following memory load
operation. Therefore, as shown in Listing 2, the added directives
will inform the predictor on two items: a) the amount of load re-
quests to approximate (i.e., coverage), and b) which load instruction
to approximate.

#pragma add_pred{fetch , 9, predict , 1}
...
#pragma approx{B}
C[i] = A[i] + B[i];

Listing 1: annotated CUDA code

.fetch 9

.predict 1

...
ld.global.u32.approx %r0, [%r1]

Listing 2: generated PTX code

ASAP uses prediction coverage to trade off output quality for per-
formance. To satisfy a certain output quality threshold, ASAP can
rely on the programmer to provide an appropriate prediction cover-
age so as to maximize the performance gains under this threshold.
Previous works [2, 18, 25, 34] have indicated that the application
error cannot be bounded automatically in the first kernel invoca-
tion as the error of approximation depends on the semantics of the
application. However, a multi-invocation approach is still able to
automatically find the optimal prediction coverage. Hence, ASAP
can employ a searching method which is similar to the proposed
approach of prior work [33] to find the highest prediction coverage
for a given output quality requirement. As we will show in Sec-
tion 6.1, at the same prediction coverage, ASAP can lead to less
output quality loss than the state-of-the-art value predictor for
GPUs. Reciprocally, ASAP is able to achieve higher performance
improvements under the same output quality threshold.

4.5 Hardware Overhead
Figure 7 shows that ASAP-OSP uses 234 bits per entry. Additionally,
it uses three fields (not shown) namely Status (5 bits), LRU (3 bits),
and Floating-point (1 bit), making the overhead per entry 243 bits.
Status bits are used to track the current status of the entry (e.g.,
training phase, predicting phase or update phase) in order to decide
the entry’s action for the next matched request. We have discussed
the transitions between different statuses in Section 4.1. The LRU
bits are used to track the LRU information. The Floating-point bit is
used to differentiate the floating-point and integer data. Since ASAP
uses eight entries per core, the total overhead is 243 bits ×8 = 1944
bits/Core. ASAP-TSP has four extra fields per entry. These fields
are ValueStrideShortA, ValueStrideShortB, ValueStrideLongA, and
ValueStrideLongB, thus, the total overhead is (243+32×4)×8 = 2968
bits/Core (0.36KB/Core). In addition to these bits, each core employs
four integer adders, two floating-point adders, four 2×1 MUXes,
two comparators, and one OR gate.
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Figure 12: Application Error for different value predictors at (a) 10% (b) 20% coverage.

Table 2: List of evaluated GPGPU applications.

Abbr. Input Category Coalescing Int.
GESUMMV [29] 2048 × 2048 Matrix BW-Bound Good No
SYR2K [29] 128 × 128 Matrix × 3 Latency-Bound Good No
SYRK [29] 256 × 256 Matrix × 2 Latency-Bound Good No

EMBOSS (2DCONV) [29] 4096 × 4096 Image BW-Bound Poor Yes
BLUR (2DCONV) [29] 4096 × 4096 Image BW-Bound Poor Yes

ATAX [29] 4096 × 4096 Matrix Latency-Bound Good No
BICG [29] 3072 × 3072 Matrix Latency-Bound Good No

3DCONV [29] 256 × 256 × 256 Matrix BW-Bound Poor Yes
SLA [1] Size 24000000 Array Energy-Bound Good No
LPS [1] 256 × 256 × 256 Matrix BW-Bound poor Yes
SCP [1] Vector × 16384 BW-Bound Good No
CONS [1] 8192 × 8192 Matrix Energy-Bound Good Yes

5 EVALUATION METHODOLOGY
5.1 Application Characteristics
We consider a variety of GPGPU applications from Polybench [29]
and CUDA SDK [1] as shown in Table 2. We chose them as they
show diversity in terms of memory intensity and coalescing behav-
ior. Also, these applications use matrix or vector inputs with strided
values provided by their corresponding benchmark suites and they
can accept realistic images as their inputs. We use annotations to
mark the approximable loads. We ensure that they do not contain
pointers or lead to fatal errors, and thus can be approximated safely.
The programmer can also tune the aggressiveness of value approxi-
mation by adjusting the prediction coverage [20, 35, 45] or using
only restricted address strides (Section 5.2). If there are drastic vari-
ations in value strides for all given address strides, the programmer
can choose to turn off the value predictor.

We classify applications into multiple categories. The BW-
Bound applications have high DRAM bandwidth utilization (at
least 40%) and relatively low IPC (at most 500). The Latency-
Bound applications have low IPC (less than 100) and low band-
width utilization (less than 10%). For both these classes, we expect
value prediction would provide performance and data movement
reduction benefits. The Energy-Bound applications have high IPC
(more than 500) and significant off-chip traffic. For such applications,
we expect value prediction would provide data movement reduc-
tion benefits but not necessarily performance benefits. Finally, we
also considered coalescing conditions. The loads of EMBOSS, BLUR,
3DCONV, and LPS are poorly-coalesced (i.e., two or more cache line
requests are generated per load instruction per warp.). Other ap-
plications have good coalescing characteristics. Our applications
use integer or floating point data. The last column of Table 2 shows
whether the data type is integer (Int.) or floating point.

5.2 Choice of the Restricted Address Strides
For the restricted mode of ASAP, we manually set the acceptable
address strides. As we have discussed in Section 3, we would prefer
address strides that correspond to closer data on the same row or
column of the input. However, as cache lines in GPUs typically
contain 128 consecutive bytes, the address stride need to be set to at
least 128 in order to predict cache lines in the same row. Therefore,
the address stride of ±row_size of inputs is used for all applications,
which corresponds to the closest cache lines in the same column.
Also, other address strides are used if they show linear correlations
with their corresponding value strides.

6 EXPERIMENTAL EVALUATION
We compare the proposed ASAP design with the prior RFVP-
Style predictors adopting both OSP and TSP sub-predictors (Sec-
tion 2.2). For a fair comparison, we use the same number of entries
(i.e., 8) across all predictors. They are RFVP-OSP-8, RFVP-TSP-
8, ASAP-OSP-8, ASAP-TSP-8, ASAP-OSP-8-Restricted and ASAP-
TSP-8-Restricted. We also compare ASAP design with the oracle
implementations of RFVP-Style-OSP and RFVP-Style-TSP, namely
RFVP-OSP-Unlimited and RFVP-TSP-Unlimited, respectively. These
oracle implementations assume unlimited hardware budget for the
prediction table entries. Hence, the loads from each PC and Warp
ID combination can use a separate entry such that predictions from
different PCs and warps do not affect each other.

6.1 Effect on Output Quality
Figure 12 shows the comparison of Application Error of 10% and
20% coverage. We limit the predictors’ coverage to be under 20% to
restrict the error. However, if the user has knowledge of the applica-
tion’s good predictability (e.g., SCP), coverage can be set higher for
more performance and data movement reduction benefits. We make
the following observations. First, we find that at the same coverage,
our proposed predictors have better accuracy than the previous
predictors, even when the number of entries for ASAP is much
less than RFVP. On average, RFVP-Unlimited predictors predict
more accurately than RFVP-8 predictors, and ASAP-8 predictors
are more accurate than RFVP-Unlimited predictors. Also, for each
category of predictors, the TSP predictors are more accurate than
the OSP predictors, showing the effectiveness of predicting with
more regular strides. At 10% coverage, both ASAP-TSP-8 and ASAP-
TSP-8-Restricted reduce Application Error by 92% over RFVP-TSP-8
and 84% over RFVP-TSP-Unlimited. At 20% coverage, ASAP-TSP-8
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Figure 13: EMBOSS(2DCONV) outputs at 10% coverage.
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Figure 14: GPU performance and total energy consumption at different coverages.

reduces Application Error by 94% over RFVP-TSP-8 and 89% over
RFVP-TSP-Unlimited. ASAP-TSP-8-Restricted reduces Application
Error by 95% over RFVP-TSP-8 and 91% over RFVP-TSP-Unlimited.

Second, we find that for certain applications, (i.e., EMBOSS, BLUR,
SLA, 3DCONV, SCP, CONS, LPS), the increase in application error with
increasing coverage is at a much slower rate in ASAP compared to
that in other predictors. This implies that ASAP is able to better ex-
ploit the relationship between address and value strides to improve
the accuracy even at higher coverages. For applications SYR2K, SYRK,
ATAX, BICG, the accuracy benefits of ASAP and RVFP are compara-
ble, implying no obvious address and value stride correlations exist
in them. There are cases where RFVP-8 predictors have better accu-
racy than the RFVP-Unlimited predictors (i.e., GESUMMV, LPS). This
indicates that not sharing the prediction table entries across warps
degrades the prediction accuracy in some cases. However, ASAP-
TSP-8 and ASAP-TSP-8-Restricted still have better accuracy in this
case, because they capture more stable value strides according to
the address pattern observed across different warps and PCs.

For the image output quality, we pick EMBOSS(2DCONV) at 10%
coverage to study the difference between predictors. As shown in
Figures 13(a) to (d), there is significantly less noise in ASAP-TSP-8
and ASAP-TSP-8-Restricted than in RFVP-TSP-8. Further, there is
slightly less noise in ASAP-TSP-8 and ASAP-TSP-8-Restricted than
in RFVP-TSP-Unlimited. This trend matches the Application Error
result. For these outputs, ASAP-TSP-8 shows 13.6% Application
Error and ASAP-TSP-8-Restricted shows 13.5%. We find that these
errors do not cause significant quality losses.

We conclude that by leveraging the address and value stride
correlation, (regardless of the PC and Warp ID information), ASAP
can effectively improve the prediction accuracy over the RFVP-
Style predictors with a similar or lower area budget. Without extra
burden on the user, ASAP’s default mode can provide accuracy close
to that of the restricted mode. Meanwhile, the restricted mode can
further increase the accuracy with user-specified address strides.

6.2 Effect on Performance and Energy
Figure 14 shows the performance and energy benefits of apply-
ing value prediction. For brevity, we show results of RFVP-TSP-
Unlimited, RFVP-TSP-8, and ASAP-TSP-8 from each of the three
predictor categories. We also confirm that other predictors show
similar trends. Since the RFVP and ASAP predictors predict similar
numbers of cache lines at the same coverage, they provide similar
IPC and energy benefits. However, ASAP produces smaller errors.
On average, ASAP-TSP-8 improves IPC by 7% at 10% coverage and
improves IPC by 15% at 20% coverage. Specifically, for the Latency-
Bound applications, we observe an average IPC improvement of
11% at 10% coverage and an average IPC improvement of 29% at
20% coverage. On the other hand, ASAP-TSP-8 reduces GPU energy
consumption by 7% at 10% coverage and reduces GPU energy con-
sumption by 14% at 20% coverage. We conclude that the prediction
coverage is the dominant factor of performance and energy ben-
efits in value approximation. Value approximation can effectively
improve performance and reduce energy consumption. Also, these
benefits grow larger when the prediction coverage increases.

On average, the best performing ASAP predictor produces only
0.26% (up to 13.51%) Application Error at 10% coverage and 0.43%
(up to 24.47%) Application Error at 20% coverage. In contrast, with
the same number of entries, the best performing RFVP predictor
incurs 3.48% (up to 40.08%) Application Error at 10% coverage and
4.57% (up to 54.54%) Application Error at 20% coverage. Even when
using different entries for each PC and Warp ID combination, RFVP
incurs 1.65% (up to 51.74%) Application Error at 10% coverage and
8.10% (up to 63.59%) Application Error at 20% coverage, which is
much higher than that of ASAP with 8 entries. This means that
ASAP can employ higher coverages and consequently obtain more
performance and energy benefits if a certain error threshold needs
to be satisfied. We conclude that ASAP can achieve more perfor-
mance and energy benefits under a specific error threshold.
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Figure 15: Effect of AddressStrideLong on Miss Match Rate.
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Figure 16: Miss Match Rate with different entry numbers.

7 SENSITIVITY STUDIES
Effect of AddressStrideLong. The Miss Match Rate (MMR) re-
flects how effective ASAP is able to capture the address patterns in
GPUs. It is important for ASAP to achieve an acceptable MMR, as
it determines the maximum coverage of ASAP. For example, the
MMR needs to reach at least 20% for applications with 100% L1 Miss
Rate, if the desired coverage is 20%. To prove the effectiveness of Ad-
dressStrideLong, we show the MMR of ASAP-OSP-8 with and with-
out it. As shown in Figure 15, we find that for poorly-coalesced ap-
plications (i.e., EMBOSS, BLUR, 3DCONV, LPS), ASAP-OSP-8 has much
higher MMRs with StrideLong. We also find that for well-coalesced
applications, the MMR can become low if StrideLong is not em-
ployed (i.e., SLA, SCP, CONS). This limits their maximum coverage,
data movement reduction, and performance benefits. This effec-
tively shows ASAP’s ability to match for interleaving and missing
intermediate address patterns with the help of AddressStrideLong
(see Section 4). Other ASAP predictors also show the same trend.
We conclude that ASAP’s address matching ability under complex
patterns can be significantly improved with AddressStrideLong.
Effect of Number of Entries. Figure 16 shows the MMR of ASAP-
OSP-8 with different numbers of entries. Wemake two observations.
First, applications SLA, 3DCONV, SCP, CONS need more entries to
achieve high MMR as there are more co-existing address patterns.
Others can reach high MMR even with 2 entries, which indicates
that they have fewer co-existing address patterns. Second, after size
8, all applications’ MMRs do not improve significantly and therefore
we use it as ASAP’s default configuration. Other ASAP predictors
also show the same trend. We conclude that ASAP achieves good
MMR and accuracy without incurring large hardware overhead.
Effect ofWarp Scheduling Policy. The choice of warp scheduler
can affect the warp execution order, thereby affecting the address
patterns [9]. Figure 17 shows the MMR of ASAP-OSP-8 working
under: The baseline, Greedy-Then-Oldest (GTO) scheduler, and
Round-Robin (RR) scheduler. We make two major observations.
First, ASAP-OSP-8 has high MMR for both schedulers proving that
it is adaptive for different warp schedulers. Second, ASAP-OSP-8
usually achieves higher MMRwith the RR scheduler. This is because
the address order is more regular under the RR scheduler [9].

8 RELATEDWORK
Previously proposed RFVP for GPUs [45] relies significantly on the
program counter (PC) to detect value patterns in the memory re-
quests. Such PC-based mapping mechanism implicitly assumes that
the memory requests originated from that particular PC are ordered
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Figure 17: Miss Match Rate with GTO and RR Scheduler.

such that they would facilitate the prediction of values. However,
as multiple warps can execute the same instruction (i.e., using the
same PC) independently at different times in GPUs, the memory
request order from a particular PC can be highly influenced by
factors such as the choice of warp scheduling scheme. Therefore, as
we show quantitatively in Section 6, the PC-based predictors cause
a significant loss of accuracy in GPUs. This problem can be partially
addressed by using a separate entry for each PC and Warp ID com-
bination. However, such a mechanism can become prohibitively
expensive as the number of concurrent warps and schedulers grows
with each new generation of GPUs [7, 14, 19, 23, 24]. Moreover,
using separate entries also disallow the detection of value patterns
that might exist across requests from different warps (e.g., when
nearby pixels of an image with regular value strides are handled by
nearby warps). Wong et al. [44] proposed to exploit the intra-warp
value similarity such that only one representative thread within a
warp is required to perform the computation. Value approximation
techniques [16] are proposed to reduce GPU energy consumption
by carefully considering lower precision data/instructions. We be-
lieve ASAP is complementary to them as it eliminates the need for
accessing the main memory for the predicted cache lines.

Several value prediction techniques [3, 4, 17, 26–28, 38, 39] in
the context of CPUs are based on PC-based hash mechanisms,
which have similar limitations as that of RVFP described earlier.
Load-value approximation techniques [20, 35, 36] and context-based
value predictors [21, 37, 40] designed for CPUs consider memory ad-
dresses and other metadata for effective approximations. However,
such techniques require significant per-thread hardware resources,
which can become prohibitively expensive in GPUs as it concur-
rently executes thousands of threads.

9 CONCLUSIONS
In this paper, we presented a low-overhead value predictor for GPUs
that considers the correlation between address strides and value
strides in order to improve the prediction accuracy. Compared to
the state-of-the-art value predictor, RFVP, we find that our predictor
can significantly improve value prediction accuracy even at a high
value of prediction coverage (leading to significant performance and
data movement benefits). We also show it is also able to function
effectively even under complicated address patterns.We believe that
this paper can open up interesting research avenues that consider
other readily available information locally at the core (e.g., address
stride information) to improve the accuracy of value prediction.
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