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ABSTRACT

Memory (DRAM) energy consumption is one of the major
scalability bottlenecks for almost all computing systems, includ-
ing throughput machines such as Graphics Processing Units
(GPUs). A large fraction of DRAM dynamic energy is spent on
fetching the data bits from a DRAM page (row) to a small-sized
hardware structure called as the row buffer. The data access
from this row buffer is much less expensive in terms of energy
and latency. Hence, it is preferred to reuse the buffered data as
much as possible before activating another row and bringing
its data to these row buffers. Our thorough characterization of
several GPGPU applications shows that these row buffers are
poorly utilized leading to sub-optimal energy consumption. To
address this, we propose a novel memory scheduling for GPUs
that exploits latency and error tolerance properties of GPGPU
applications to reduce row energy by 44% on average.

Index Terms—GPUs, Scheduling, Approximate Computing

I. INTRODUCTION

Graphics Processing Unit (GPU)-based architectures are
becoming the default accelerator choice for a large number
of data-parallel applications ranging from high-performance
computing (HPC) workloads to cryptographic applications.
Because of their ability to provide high compute throughput at a
competitive power budget, they are being employed into almost
all kinds of computing systems, including many machines
on Top500 [1] and Green500 lists [2]. One of the biggest
impediments towards the continuous scaling of GPUs is the
memory system energy consumption [3]. A large fraction of
DRAM access energy is related to the fact that multiple high-
energy consuming DRAM operations such as row activations
and precharges must be performed, so as to access data from a
DRAM row (page). These operations are required to ensure the
data from the correct row is present in the row buffer, which
is a limited-sized hardware structure attached to each DRAM
bank. If accesses to the same row can be scheduled together
without switching in and out the row buffer data (i.e., row
buffer locality can be enhanced), they can incur much less row
energy. Quantitatively, this energy can be around 25-50% of
the total DRAM energy [4]–[7] and is dependent on the row
buffer locality workloads (higher the row buffer locality, the
lower the DRAM energy). Hence, it is preferred to reuse the
buffered data of a row as much as possible to improve the row
buffer locality and reduce the energy consumption.

We observe that several GPGPU applications suffer from
poor row buffer reuse (also referred to as row thrashing).
It can happen even with the popular First-Row First-Come-
First-Serve (FR-FCFS) scheduler that leverages a large re-
order pending request queue and an open-row policy which is
typically employed to maximize the row buffer locality. This is
not only caused by the GPU scheduling policies at the core but
is also dependent on the applications’ algorithms and their data
placement mechanisms. Moreover, the multi-threading nature
of the GPUs can cause severe contention and interleaving of
requests at the memory controller, which can also lead to poor
row buffer locality. To address this problem, we performed a
detailed characterization of row buffer locality in GPUs and
revealed two key insights. First, the current GPU memory
scheduling policies are too aggressive in reducing latencies
of requests: requests in the pending queue are issued to their
destined DRAM banks as soon as these DRAM banks finish
serving the previous requests. Second, the current memory
scheduling policies are too strict in terms of fetching only
the exact values from the DRAM banks. Therefore, an entire
DRAM row has to be fetched into the row buffer even if it
is poorly reused. We argue that these aggressive and strict
policies are sub-optimal towards improving row buffer locality.

Our lazy memory scheduler relaxes the aforementioned
constraints by leveraging the fact that several GPGPU ap-
plications are latency and error tolerant [8], [9]. Specifically,
our proposed memory scheduler works in two modes: delayed
and approximate. The delayed memory scheduling (DMS)
carefully delays (i.e., increases the access latency) the issuing
of both read and write pending memory accesses so that more
requests can be accumulated in the FR-FCFS pending queue.
This helps the memory scheduler to find more requests (i.e.,
will have more visibility) that can be co-scheduled back to
back to the same DRAM row leading to improved row buffer
locality. Because several GPGPU applications are inherently
latency tolerant as they spawn thousands of threads to hide
the long memory access latencies (which is not the case for
most of the workloads executed on CPUs), we find that the
additional delay does not affect performance significantly for
many GPGPU applications. However, for certain applications
that cannot tolerate latency significantly, DMS is also able to
find an appropriate delay to avoid severe loss in performance.

The approximate memory scheduling (AMS) is based on our
observation that a large portion of row activations is caused
by only a small portion of memory accesses. To this end, the
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goal of AMS is to find these accesses with low row buffer
localities in the pending queue and return them immediately
instead of issuing them to the DRAM banks. The values
of such a small portion of memory accesses can then be
approximated using various existing techniques [10]–[12] on
their way back to the cores. These techniques bound the error
with the help of programmer annotations and by predicting only
a fraction of memory requests (called as prediction coverage).
We demonstrated the effect of approximation on the application
output by using a simple value predictor, which makes use
of the readily available data in the associated L2 caches of
the memory partitions. Because of the fact that many GPGPU
applications are error tolerant or can accept limited losses in
the output quality [8], [12], we find that such an approach can
help in significantly reducing the number of row activations.
Overall, AMS focuses on the problem of when to approximate
and allow the new or existing works [10], [11] to address the
equally important problem of how to approximate.

To the best of our knowledge, this is the first work that
improves the row buffer locality and reduces row energy in
GPUs via carefully delaying and/or approximating the memory
requests (i.e., trading-off modest performance and application
accuracy for better row buffer locality). In summary, this paper
makes the following contributions.

• We demonstrate that delaying the scheduling of memory
requests can significantly improve the overall row buffer locality
because the memory controller can find more requests that
can be scheduled back to back to the same row. Given that
several GPGPU applications are latency tolerant, we do not
observe notable performance reduction in such applications. To
control the performance loss caused by delays, we devise a low-
overhead dynamic mechanism that limits the delay by ensuring
that utilization of DRAM stays above a certain threshold.

• We demonstrate that a small fraction of memory requests
can cause a large fraction of row activations (i.e., there is
non-uniform reuse of row buffers). Therefore, approximating
a limited number of requests (bounded by the prediction
coverage) can significantly reduce the row energy, without
notably degrading the output quality of error-tolerant GPGPU
applications. To improve the row buffer locality more effectively
under a limited prediction coverage, we devise a low-overhead
dynamic mechanism that is able to prioritize the approximation
of requests with relatively low row buffer localities.

• Our newly proposed lazy memory scheduler for GPUs
realizes the aforementioned contributions via delayed memory
scheduling (DMS) and approximate memory scheduling (AMS),
respectively. We show that DMS and AMS can work separately
or together while improving the effectiveness of each other. Our
evaluation shows that across a variety of GPGPU applications,
row energy can be reduced by 12% using DMS, 33% using
AMS, and 44% using a combination of both schemes. We
achieve these results with less than 1% IPC loss, with an
acceptable loss in application accuracy, and without requiring
additional buffer space beyond what already exists in the
baseline memory controllers.

II. BACKGROUND AND METRICS

A. Baseline GPU Architecture

GPUs achieve high throughput because they are capable of
executing a large number of threads concurrently. We consider
a generic GPU architecture consisting of several cores (known
as Streaming Multi-processors (SM) in NVIDIA terminology),
which are connected to memory partitions via an interconnect
as shown in Figure 1. In order to support large amount of
thread-level parallelism in GPUs, each SM consists of several
processing elements (PEs), supported by a large register file (for
saving context of a large number of concurrent threads so as to
minimize context switch overhead) and all memory partitions
manage high bandwidth memories (for fast data access to large
number of concurrent threads). Each SM also has a private L1
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Fig. 1: Overview of our base-
line GPU Architecture.

cache and each memory parti-
tion is attached to a shared L2
cache. Each memory partition
also has a memory controller
(details will be discussed next)
that is responsible to schedule
L2 cache misses (i.e., mem-
ory requests sent from the
L2 cache) to the DRAM. We
evaluate the proposed tech-
niques on a cycle-level GPU
simulator – GPGPU-Sim [13]
(Table I) and collect energy-
related measurements using
GPUWattch [14].

TABLE I: Key configuration parameters of the simulated GPU

SM Features 1400MHz core clock, 30 SMs, SIMT width = 32 (16 × 2)
Resources / Core 32KB shared memory, 32KB register file, Max.

1536 threads (48 warps, 32 threads/warp)
L1 Caches / Core 16KB 4-way L1 data cache

12KB 24-way texture cache, 8KB 2-way constant cache,
2KB 4-way I-cache, 128B cache block size

L2 Cache 8-way 128 KB/memory channel (768KB in total)
128B cache block size

Features Memory coalescing and inter-warp merging enabled,
immediate post-dominator based branch divergence handling

Memory Model 6 GDDR5 Memory Controllers (MCs), FR-FCFS scheduling [15],
16 DRAM-banks/MC, 4 bank-groups/MC,
924 MHz memory clock, global linear address space is
interleaved among partitions in chunks of 256 bytes
Hynix GDDR5 Timing, tCL = 12, tRP = 12, tRC = 40,
tRAS = 28, tCCD = 2, tRCD = 12, tRRD = 6, tCDLR = 5

Interconnect 1 crossbar/direction (30 SMs, 6 MCs),
1400MHz interconnect clock, islip VC and switch allocators

B. DRAM Organization and Operations

We provide a high-level description of DRAM organization/-
operations and refer readers to the existing rich literature [4],
[6], [7], [9], [16]–[18] on DRAM for more details.
DRAM organization. The data is spread across multiple
channels (partitions) for achieving high memory bandwidth.
For each channel, the memory operations are performed at the
granularity of DRAM banks. Each bank consists of the cell
arrays and a row buffer (sense amplifier) to read data from or
write data to the cell arrays [19]. The cell arrays are where the
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Fig. 2: Effect of pending queue size on the number of row
activations (Act.). Results are normalized to the case of pending
queue size 128.

data is stored and consist of many rows (pages) and columns
(bits). Each memory channel is also associated with a memory
controller, which buffers the pending memory requests in a
request pending queue and determines the order to serve them
in their destined banks.
DRAM operations. In order to serve a read or write request to
a bank, a whole row in the cell array must first be activated (i.e.,
opened) to fetch its data into the row buffer. After the pending
accesses to the current row are served and before the pending
accesses for other rows can be served, the data present in the
row buffer must be restored back to the cell arrays to safely
keep the correct data values of the row. Finally, a precharge
operation also needs to be performed in order to ensure that the
next activation operation of a row can be performed successfully.
The access energy is dependent on the access type. The row
buffer hit request consumes less energy compared to the row
buffer miss request. It is because serving the row buffer miss
request involves costly operations such as activation, restore and
precharge. The energy consumed by these operations (referred
to as row energy in this paper) contributes significantly to the
total DRAM energy consumption [6], especially when the row
buffer locality is low (i.e., the ratio of row buffer miss requests
is high among all DRAM requests). Note that although we use
GDDR5 DRAM model as our baseline in this paper, the row
locality concerns are pervasive across all memory technologies
(e.g., HBM, HBM2) [6], [7].

C. Baseline Memory Controller

Our baseline memory scheduler is First-Row First-Come-
First-Serve (FR-FCFS) [13], [15], [20], [21], which is com-
monly employed to optimize for row buffer locality in GPUs.
Specifically, FR-FCFS prioritizes row buffer hit requests over
other requests, including older ones. If no request is a row buffer
hit, then FR-FCFS prioritizes older requests over younger ones.
We also use the open-row policy together with the FR-FCFS
scheduler to minimize the row activations. Both read and write
requests are served as per FR-FCFS scheduling policy [13].
A large re-order pending request queue can potentially help
in reducing the number of row activations by making more
requests visible to the FR-FCFS memory scheduler. For a series
of GPGPU applications, Figure 2 shows that the number of

activations reduces (i.e., row buffer locality increases) with
larger queue sizes. As the rate of decrease saturates after the
size of 128, we use it as our baseline configuration.

D. Evaluation Metrics and Terminology

We summarize the definitions that will be used in this paper.
DRAM Locality-related Terminology. Row Buffer Locality
(RBL) is defined as the number of requests that are scheduled
back-to-back to the same DRAM row during the time it is
activated in the row buffer. In this context, the notation RBL(X)
would imply that X requests access the same row back-to-back
before it is closed. The Average Row Buffer Locality (Avg-
RBL) is defined as the ratio of the total number of memory
requests to the total number of row activations. We also use
the notation RBL(X - Y) to denote all the rows which have
RBLs that belong to the range RBL(X) to RBL(Y).
Delay-related Terminology. We define Delay as the minimum
number of required cycles spent by every request in the
pending queue before it can be considered for scheduling.
These required cycles are enforced by our proposed delayed
memory scheduling (DMS) which will be introduced in the
following sections. In this context, we use the notation DMS(X),
where X indicates the minimum required cycles of delay, to
denote the delay configuration of the pending queue. The
largest value of X at which the application performance (in
terms of Instructions-per-Cycle (IPC)) degrades no more than
a user-defined percentage is defined as the Maximum Tolerable
Delay (MTD). For our purposes, we tolerate up to 5% IPC
degradation compared to the baseline but this number can also
be changed by the user.
Approximation-related Terminology. The coverage is defined
as the percentage of memory global read requests that are not
served by the DRAM banks but instead dropped from the
memory pending queue and returned immediately to the reply
queue. It will then be recognized and approximated by the
value predictor on its way back to the core. We consider these
global read requests for approximation only when they are in
rows with low RBLs. In this context, we define RBL-Threshold,
T hRBL, which is the value up to which the row is considered
to have low RBL and hence those requests are the candidates
for approximation. For example, if T hRBL is equal to 3, it
implies that all rows with RBL(1), RBL(2), and RBL(3) have
low RBL. The dropping of requests in rows with low RBL
is executed by our proposed approximate memory scheduling
(AMS), which will be introduced in the following sections. We
use AMS(T hRBL) to denote the approximation configuration.
The approximation conducted by AMS and value predictor can
cause a certain level of output quality degradation, which we
estimate with the application error. The application error is
defined as the average relative error between the output of the
baseline version of an application and the output of the same
application with load value approximation. In general, higher
coverage can lead to larger application error [12].
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III. MOTIVATION AND ANALYSIS

Our goal is to improve the average row buffer locality
(i.e., Avg-RBL) by reducing the number of poorly reused
rows. To this end, we propose two mechanisms: a) delayed
memory scheduling (DMS), which trade-off scheduling delay
(and potentially performance) for better Avg-RBL and b)
approximate memory scheduling (AMS) which trade-off output
quality for better Avg-RBL. In this section, we will motivate
these trade-offs and show their effectiveness. We will also
discuss how both these scheduling techniques can work together
for even higher improvements in the Avg-RBL.

A. Delayed Memory Scheduling (DMS)

The baseline FR-FCFS scheduler attempts to schedule
pending memory requests to the DRAM bank as soon as
it is idle. Interestingly, we find that such timely scheduling
of requests by the memory controllers actually disallows
optimal reuse of data present in row buffers. To understand
this observation, consider an illustrative example shown in
Figure 3. The first scenario in Figure 3(a) depicts the baseline
case of FR-FCFS scheduling. As shown in the figure, there
are currently four pending requests in the memory controller’s
pending queue and these four requests belong to four different
DRAM rows (R1, R2, R3, R4) of the same bank. Also, there
are many more requests destined to the same bank but have
not yet arrived at the pending request queue. Among such
requests, there are four more requests that belong to the same
four DRAM rows (R1, R2, R3, R4). For the baseline scheduler
that timely issues all these requests, we find that the first
four requests in the pending queue are issued back to back
to the DRAM bank, leading to 4 activations for R1 through
R4. When the remaining four requests arrive at the pending
queue, four additional activations will also be required to serve
them. Therefore, eight activations are required to serve all eight
requests of R1 through R4, leading to an Avg-RBL of 1.

…… ……

requests currently
In the pending queue

oldest
request

R1R2R3R4

future
requests

R2

request
X cycles away

R4 R3 R1

For R1 through R4:
Activations = 8
Requests = 8

Locality = 8/8 = 1

(a) Pending queue with the baseline FR-FCFS scheduling.

…… ……

requests currently
In the pending queue

request stalled
for X cycles

R1R2R3R4

future
requests

R2R4 R3 R1

For R1 through R4:
Activations = 4
Requests = 8

Locality = 8/4 = 2

(b) Pending queue with DMS.

Fig. 3: An example illustrating the benefits of delayed memory
scheduling due to increased visibility to the memory controller.
Eight requests are shown in total destined to four DRAM rows
(R1, R2, R3, R4).

In order to improve the Avg-RBL, we propose the delayed
memory scheduling (DMS). DMS carefully delays the issuing
of each pending memory request in the hope that more requests

destined to the same row of a bank will show up in the
pending queue. To illustrate this, consider the case as shown
in Figure 3(b) where the issuing of all requests have been
delayed for X cycles. Hence, by the time the other four requests
have reached the pending queue, the first four requests to R1
through R4 are still in the pending queue. Therefore, only four
activations are required to serve all eight requests, leading to
an Avg-RBL of 2 (twice of the baseline case).

Figure 4(a) shows the normalized number of activations
across a variety of GPGPU applications. For all of these
applications, each of their requests (that does not lead to
a row hit) is delayed by X cycles in the pending queue,
denoted by DMS(X), before it can be served by a DRAM
bank (more details are explained in Section IV). We show the
results for when X is equal to 64, 128, 256, 512, 1024, and
2048 cycles. We find that many applications are sensitive to
delay – the higher the delay, the higher the chance of finding
requests destined to the same rows, which leads to fewer row
activations. On average, the activation reduction can be as high
as 31%, when a delay of 2048 cycles is used. Figure 5 shows
the distribution of row activations based on their RBLs with
different delays for two applications. As we observe, for both
applications, the proportion of row activations with RBL(1)
(i.e., only one request accesses the activated row before it is
closed – Section II-D) reduces significantly with the increase
of delay. Meanwhile, the proportions of row activations with
higher RBLs have increased. This shift in the RBL of row
activations effectively shows how DMS can help to improve
the Avg-RBL for real applications.

On the negative side, the increase in delay can degrade the
overall performance. Thanks to the latency tolerance of GPGPU
applications, the increase of delay has a limited impact on the
performance as shown in Figure 4(b). Many applications retain
their baseline performance up to 95% even at very large delays
(e.g., 1024 cycles). However, IPC’s sensitivity to delay varies
for different applications and hence it is critical to determine an
appropriate value of delay to carefully trade-off the activation
reduction with the performance.

B. Approximate Memory Scheduling (AMS)

In order to further improve the Avg-RBL, we determine
which pending requests have low RBLs and propose to return
these requests immediately instead of issuing them to the
DRAM banks. Subsequently, their values are approximated
using existing techniques on their way back to the cores.
Our proposal is motivated by the observation that for many
GPGPU applications, a small portion of memory requests
contributes to a high proportion of total row activations. The
cause of this is multi-fold as it depends not only on the
applications’ algorithms and data placement mechanisms but
also on the runtime behaviors driven by the warp or thread-
block scheduling techniques. Nevertheless, as we will discuss
further, our proposed techniques are also complementary to
other optimizations that may improve Avg-RBL separately.

AMS works on row activations that only contain memory
read accesses, as memory write accesses are typically not the
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(a) Effect of delay on the number of row activations.
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Fig. 4: Effect of delayed memory scheduling on the number of activations and performance. Results are normalized to the baseline
architecture (Section II), which does not employ delayed or approximate scheduling.
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Fig. 5: Effect of delayed memory scheduling on activation
proportions of each RBL. x-axis indicates delay. y-axis indicates
each component’s proportion to the total number of activations.

targets for value approximation techniques. Figure 6 shows the
proportion of row activations from the rows that are opened
to serve only global read requests. We sort these requests in
increasing order of their associated row activations’ RBLs.
Note that the x-axis denotes the proportion to the total number
of requests. The y-axis denotes the proportion to the total
number of activations. The shaded regions on the curve indicate
the portions contributed by each RBL category. As shown in
Figure 6(a), for GEMM around 10% of memory read requests
associated with RBL(1) and RBL(2) cause about 65% of
the total row activations. Similarly, as shown in Figure 6(b),
for 3MM around 0.2% of memory read requests associated
with RBL(1) and RBL(2) cause about 45% of the total row
activations. This implies that a large fraction of row activations
is caused by only a small fraction of memory requests.

In order to leverage this observation to further reduce
row activations, we propose approximate memory scheduling
(i.e., AMS). AMS first recognizes the pending read requests
which are not destined to the same rows as any of the
pending write requests. Then AMS decides if these requests
are associated with low-RBL row activations, which means
that the RBLs that these requests are expected to bring are no
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Fig. 6: The cumulative distribution of total row activations for
requests associated with different RBLs. x-axis is the proportion
of requests sorted by their RBLs.

greater than a specific RBL-Threshold (i.e., T hRBL, more details
in Section IV). Subsequently, AMS returns these requests
immediately without issuing them to the DRAM banks. Finally,
the values of such requests will be provided by a value
approximation technique on their way back to the cores. We
denote this as AMS(T hRBL). Such an approach eliminates
these low-RBL row activations in the DRAM banks, thereby
significantly improving the Avg-RBL and reducing the DRAM
energy. On the negative side, such an approach can lead to
application-level error, which needs to be acceptable to the
user. To control the application-level error, the number of
approximated requests (i.e., prediction coverage) needs to
be limited. Thus, within the coverage limit, finding the row
activations with relatively low RBLs among all the activations
is the goal of AMS. Further details of AMS are in Section IV.

C. Delayed and Approximate Scheduling

Having discussed the benefits of DMS and AMS separately,
we now discuss how both DMS and AMS can work together
to provide further benefits in terms of reducing the number of
row activations and improving the performance. In this context,
we consider the following two questions:
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1) How can approximate memory scheduling help delayed
memory scheduling: We find that AMS can help DMS
especially for applications that belong to two categories:

Case 1. The application’s number of row activations is not
sensitive to the change of delay. For example, Figure 7(a)
shows the normalized IPC and the normalized number of row
activations for application LPS under three different cases.
LPS has only a limited activation reduction (i.e., 2%) with its
maximum tolerable delay (MTD) of 256 cycles. However, with
a delay value of 512 cycles, LPS can reach its highest activation
reduction (i.e., 6%), but also at the price of an IPC loss of 11%.
On the contrary, if AMS is applied instead and approximates
the requests associated with RBL(1-8) row activations (i.e.,
AMS(8)), LPS can get 16% activation reduction and 5% IPC
improvement, only at the cost of less than 1% application error
which is a minimal quality loss. Therefore, AMS is useful when
DMS cannot effectively reduce the number of row activations
as shown in this case.

Normalized IPC Normalized Act. App. Error

DMS(256) DMS(512) AMS(8)
0

0.2

0.4

0.6

0.8

1
0.95

(a) LPS

DMS(128) DMS(256) AMS(8)
0

0.2

0.4

0.6

0.8

1
0.95

DMS(256)
+ AMS(8)

(b) SCP

Fig. 7: Examples illustrating how approximate memory schedul-
ing can help delayed memory scheduling.

Case 2. The application’s number of row activations is
sensitive to the change of delay, but the performance loss
is preventing DMS from adopting higher delay values. For
example, Figure 7(b) shows different metrics for application
SCP under four different cases. With DMS(128), the activation
reduction can reach 9% at the cost of a 4% IPC loss. As
the value of delay increases from 128 to 256, the activation
reduction can further reach 15% at the cost of a 7% IPC loss.
However, if we required that the performance loss must be
under 5%, then DMS(256) should not be adopted and the
further activation reduction cannot be achieved.

On the other hand, when applying AMS alone (the results
of AMS(8) as shown in Figure 7(b)), the number of row
activations reduces and also the IPC increases at the cost of
increased application error. However, if we combine both DMS
and AMS together (the results of DMS(256) + AMS(8) as
shown in Figure 7(b)), SCP can adopt DMS(256) to obtain
more activation reduction and still achieve less than 5% IPC
loss. This means that the increase of IPC provided by AMS
can compensate for the IPC loss caused by DMS. As a result,
the value of delay can be further increased to obtain more
activation reduction from DMS. In addition, AMS is able to
work synergistically with DMS to further reduce the number
of row activations, leading to a higher activation reduction.
Therefore, AMS is useful to help increase the delay value in
DMS as shown in this case.

2) How can delayed memory scheduling help approximate
memory scheduling: We find that DMS can also help AMS
in terms of activation reduction, as delaying the issuing of
pending requests can help to more accurately identify the
low-RBL row activations. To illustrate this, consider Figure 8,
which shows that 9 requests are destined across 5 rows (i.e.,
R1 through R5) of the same DRAM bank and AMS is trying
to find a request associated with an RBL(1) row activation to
drop. Figure 8(a) shows a case when AMS is applied alone
and there are 4 more requests destined to R1 through R4 of the
same bank that have not yet reached the pending queue. Also,
the time required for the bank to serve a request is sufficient
for these 4 future requests to reach the queue. Since that the
memory scheduler only has visibility of the requests currently
in the pending queue, it observes 5 RBL(1) row activations
at this point. Therefore, if AMS were to choose a request
to be dropped, it would drop the first R1 as it is the oldest
pending request. However, this would lead to even an Avg-RBL
decrease from 1.8 (9/5) to 1.6 (8/5). This is because the total
number of activations for these 9 requests is still 5, but the
total number of requests is reduced from 9 to 8 (the first R1
is dropped). AMS cannot accurately drop R5 because the row
indexes of future requests are unknown.

……

requests currently
In the pending queue

oldest 
request

R1R2R3R4

future
requests

R5R2R4 R3 R1

If no request is dropped:
Activations = 5

Locality = 9/5 =1.8

If the oldest is dropped:
Activations = 5

Locality = 8/5 =1.6

request
4 cycles away

(a) FR-FCFS pending queue with AMS.

……

requests currently
In the pending queue

R1R2R3R4

future
requests

R5

If the request to 
R5 is dropped:
Activations = 4

Locality = 8/4 =2R2R4 R3 R1

request stalled
for 4 cycles

(b) FR-FCFS pending queue with DMS+AMS.

Fig. 8: Example illustrating how delayed memory scheduling
(DMS) can help approximate memory scheduling (AMS) by
comparing different schemes.

On the other hand, Figure 8(b) shows the case when AMS is
applied together with DMS. As a result of the added delay by
DMS, AMS will correctly drop R5 as it can observe now that
only R5 has an RBL(1) row activation. Hence, the total number
of activations is reduced from 5 to 4, and the total number
of requests is reduced from 9 to 8, leading to an Avg-RBL
increase from 1.8 (9/5) to 2 (8/4). In this case, AMS can more
accurately identify low-RBL row activations as more requests
are visible in the pending queue on account of applying DMS.

In summary, we find that both DMS and AMS can provide
significant benefits in terms of activation reduction. Further-
more, they can also improve the efficiency of each other
when applied together. In the next section, we will provide
implementation details for both memory scheduling techniques.
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Fig. 9: Design overview of the lazy memory scheduler and
associated components.

IV. DESIGN AND OPERATION

A. Overview

Figure 9 shows a high-level overview of our design. The L2
misses A are buffered at the pending queue after they arrive
at the memory controller. These pending requests are then
issued to the DRAM banks following the FR-FCFS scheduling
policy B as soon as their destined DRAM banks become
available (Section II). Our proposal focuses on seamlessly
integrating our new memory scheduling schemes: DMS and
AMS with the baseline FR-FCFS scheduler. In this context,
Figure 9 shows three major components (shaded in gray color)
of the lazy memory scheduler: delayed memory scheduling unit
(DMS unit), approximate memory scheduling unit (AMS unit),
and value prediction unit (VP unit). The DMS and AMS units
coordinate with the memory controller to decide which and
when the requests should be issued to the DRAM banks. The
AMS unit also coordinates with the VP unit to decide which
and how the requests will be approximated. Consequently, these
units decide the sequence of row activations of DRAM banks
so as to maximize the Avg-RBL.

The DMS unit can either work independently or with the
AMS unit. In the former case, before opening a new DRAM
row, the DMS unit checks whether the oldest request has spent
at least X cycles (i.e., DMS(X)) in the pending queue. If true,
then this oldest request is issued to the memory banks B and
its corresponding DRAM row is opened. The other pending
requests destined to the same row are also issued back to back
(regardless of their ages) as per FR-FCFS policy. To keep track
of the delayed cycles per request, each request is assigned with
a time stamp when it enters the pending queue. This time stamp
is used by the DMS unit to check against the current time to
get the value of delay C (more details are in Section IV-B).

In the latter case, the DMS unit also checks whether the
oldest request has spent at least X cycles in the pending queue.
If true, it then checks the current prediction coverage, T hRBL,
and the pending requests’ information D to decide if this
request should be dropped (more details are in Section IV-C).
If all criteria are satisfied, the AMS unit will drop the request

from the pending queue and send a dropped read signal E to
the VP unit to generate an approximate value. Otherwise, if the
criteria are not satisfied, the request is issued to the memory
banks B , and the L2 cache is filled with accurate data served
by the memory banks F (the same as the baseline case).

B. Delayed Memory Scheduling Schemes

As discussed earlier in Section III, finding an appropriate
value for delay is important for DMS. Higher values of delay
would create more opportunities for the memory scheduler
to improve the Avg-RBL, however, at the possible loss of
performance. In this context, we propose two schemes: Static-
DMS and Dyn-DMS, which calculates the value of X statically
and dynamically, respectively.
Static-DMS: Static Delayed Memory Scheduling. The Static-
DMS uses a delay of 128 cycles (i.e., DMS(128)), based on
our empirical evaluations. As shown in Figure 4, 128 cycles is
the maximum delay that can lead to less than 5% IPC losses
across all tested applications. However, this static value of
delay misses out on the opportunity of improving Avg-RBLs
in applications with higher latency tolerances. It may also lead
to more than 5% IPC losses in untested applications. Therefore,
we further propose a scheme that dynamically decides the value
of delay based on the latency tolerance of an application.
Dyn-DMS: Dynamic Delayed Memory Scheduling.
We propose a profiling-based dynamic scheme, which
is based on the fact that the performance degradation
can be tracked locally at the memory controller
via observing the bandwidth utilization (BWUTIL).
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Fig. 10: Illustrating the relation-
ship between IPC and BWUTIL.

For all the applications we
used, we tested their BWU-
TILs and IPCs with dif-
ferent values of delay. As
shown in Figure 10, their
BWUTILs and IPCs are lin-
early correlated, which is
also confirmed in previous
works [22], [23]. For this
reason, we can track the
changes in DRAM band-
width utilization locally at
the memory controller to
keep track of the changes
in the overall performance.

Our Dyn-DMS mechanism is an iterative mechanism that
attempts to find the maximum value of delay such that
performance (reflected by bandwidth utilization) does not drop
significantly (our threshold is 5%) compared to the baseline no-
delay scenario. Dyn-DMS first samples the baseline BWUTIL
for a window of 4096 memory cycles.1 Note that in order
to accurately sample the baseline BWUTIL, the co-running
AMS scheme is temporarily halted during this window when
applying DMS and AMS together. Then starting from a delay

1Based on our experiments, 4096 cycles is a suitable window size. An overly
large window does not timely reflect the current BWUTIL, meanwhile, an
overly small window is too sensitive to local spikes in BWUTIL (or coverage).
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value of 128 cycles, the DMS unit gradually increases the
value of delay (X) for the following 4096-cycle windows in
steps of 128 delay cycles. At a particular delay, if the BWUTIL
of that window starts to drop below 95% of the baseline, the
iterative method stops and set the delay to be the last value
that leads to a BWUTIL more than 95% of the baseline. This
delay value X is also recorded. To capture the phases changes
within an application, we restart the process after every 32
windows, however, we set the previously recorded delay value
of X as the starting point for this iterative procedure to quickly
settle to the optimal value. Note that the maximum value of X
we use is 2048 and the minimum is 0 (baseline case).

C. Approximate Memory Scheduling Schemes

As discussed earlier in Section III, with a coverage limitation,
finding and dropping requests associated with relatively low
RBLs are more favorable to reduce the number of activations.
Therefore, an appropriate value for T hRBL is important for
AMS(T hRBL). High values of T hRBL would lead to unneces-
sarily approximating requests associated with high RBLs and
wasting the limited prediction coverage. On the other hand,
low values of T hRBL may not provide enough opportunities
to approximate if there are not enough requests associated
with low RBLs, thereby limiting the potentials of Avg-RBL
improvements.

The working procedure of the AMS unit has multiple steps.
As using approximate value for critical data (e.g., pointers)
may cause fatal errors for applications, we use pragma to
annotate the approximable regions of data to guarantee the
safety of applying value approximation. Hence, the AMS unit
will only proceed if it detects that the oldest pending request
is approximable. Second, the AMS unit verifies if the oldest
request satisfies the delay criteria determined by DMS. Third,
if the first criterion is satisfied, the AMS unit calculates the
coverage based on the total number of requests dropped and
the total number of requests received so far. It then checks
if the coverage is less than the user-defined coverage value
(we use 10%). Fourth, if the second criterion is also satisfied,
the AMS unit iterates through the pending queue to obtain the
RBL value associated with the request and checks if it is less
or equal to T hRBL. Also, during this iteration, the AMS unit
ensures that all the other requests destined to the same row
are global read requests, as we only approximate load values.
If the fourth criterion is also satisfied, then this request will
be dropped from the pending queue, instead of being issued
to the memory bank. In addition, all other pending requests
destined to the same row will also be dropped sequentially
in the following memory cycles. If any of these three steps
are not successful, as default, the request will be issued to the
memory banks following the FR-FCFS policy.

We propose two schemes to realize the above goals and
procedures: Static-AMS and Dyn-AMS, which calculates the
value of T hRBL statically and dynamically, respectively.
Static-AMS: Static Approximate Memory Scheduling.
Based on our empirical evaluations, we found that the T hRBL
value of 8 is appropriate as it does not allow unnecessary

RBL(1) RBL(2) RBL(3 - 8) RBL(9 - max)

8 7 6 5 4 3 2 1
0.6

0.65

0.7

0.75

0.8

N
or

m
al

iz
ed

 A
ct

.

(a) The effect on activa-
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(b) CDF for SCP’s activations.
x-axis is request percentage of
read-only rows sorted by RBL.

Fig. 11: Effect of reducing T hRBL.

approximations for requests associated with very high RBLs
and at the same time provides enough prediction coverage for
many applications. Therefore, AMS(8) is used for Static-AMS
scheme. However, as different applications have very different
RBL distributions, a static T hRBL can be sub-optimal for some
of the applications. For example, if the T hRBL is too high
for them, AMS cannot accurately target requests associated
with lower RBLs under a limited prediction coverage. On the
other hand, if the T hRBL is too low for them, AMS cannot
effectively reduce the number of activations because there are
not enough requests for it to approximate. Therefore, there is
a need to dynamically modulate the value of T hRBL so as to
more accurately target the low-RBL row activations while also
maintaining the user-defined coverage (10%).
Dyn-AMS: Dynamic Approximate Memory Scheduling.
For some applications, the Static-AMS (i.e., AMS(8)) may be
suboptimal. For example, as shown in Figure 11(a), application
SCP’s number of activations can be further reduced when
T hRBL is reduced from 8 to 1. The reason for this can be
explained with Figure 11(b). As shown in the Figure, most
of the requests within the T hRBL of 8 are associated with
RBL(2 - 8). However, there are already more than 10% of
the total requests associated with RBL(1) (i.e., the portion on
the left of the red dashed line). Therefore, a T hRBL value of 1
is most beneficial, as approximating 10% requests associated
with RBL(1) leads to the highest activation reduction. Hence,
dynamically modulating the T hRBL is necessary to further
improve the activation reduction for applications like SCP.

Based on this observation, we designed a profiling-based
Dyn-AMS scheme. Similar to the Dyn-DMS, the Dyn-AMS
is also an iterative approach that attempts to find the lowest
value of T hRBL such that the prediction coverage does not drop
below the user-defined value. Note that we empirically use
10% coverage throughout the paper and the T hRBL range we
use in the Dyn-AMS is 1 to 8. The AMS unit starts with the
T hRBL value of 8 and samples the coverages for consecutive
windows of 4096 memory cycles. First, as long as the coverage
can achieve the user-defined coverage, the AMS unit gradually
decreases the T hRBL value in steps of 1 in consecutive 4096-
cycle windows. Second, once the coverage goes below the user-
defined coverage in a window, the AMS unit gradually increases
the T hRBL value in steps of 1 until the coverage returns to the
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TABLE II: List of evaluated GPGPU applications. See Table III for more details.

Abbr. Description Input Group Thrashing Delay Related Approximation Related
Level Delay Tol. Act. Sens. T hRBL Sens. Err. Tol.

RAY [13] Ray Tracing Matrix 3 High High High Low High
inversek2j [24] Inverse kinematics for 2-joint arm Coordinates 3 High High High Low High

newtonraph [24] Equation solver Image 4 High High High Low Low
FWT [13] Fast Walsh Tranform Matrix 4 High Medium High High Low
MVT [25] Matrix Vector Product and Transpose Matrix 2 High Medium High Low High
jmeint [24] Triangle intersection detection Coordinates 2 High Medium High Low Medium
ATAX [25] Matrix Transpose, Vector Multiplication Matrix 4 High Medium High Low Low

3DCONV [25] 3D Convolution Matrix 2 High Medium High Low Medium
CONS [25] 1D Convolution Matrix 4 High Medium High Low Low

srad [13] Speckle Reducing Anisotropic Diffusion Image 4 High Medium High Low Low
LPS [13] 3D Laplace Solver Matrix 1 High Medium Low High High

BICG [25] BiCGStab Linear Solver Matrix 1 High Low High High Medium
SCP [13] scalar products Matrix 1 High Low High High Medium

GEMM [25] Matrix Multiplication Matrices 4 High Low Medium High Low
blackscholes [24] Black-Scholes Option Pricing Matrix 4 Medium Medium High High Low

2MM [25] 2 Matrix Multiplications Matrices 4 Medium Medium Medium Low Low
3MM [25] 3 Matrix Multiplications Matrices 3 Low High High Low High
SLA [13] Scan of Large Arrays Matrix 4 Low High Medium Low Low

meanfilter [24] Convolution Filter for Noise Reduction Image 3 Low High Low Low High
laplacian [24] Image sharpening filter Images 3 Low Medium Low Low Medium

TABLE III: Application features and intensity classifications. The thresholds are used only to facilitate the discussion in Section V.

Feature Description Categories (by X Range)
Low Medium High

Thrashing Level The application has X% requests in rows with RBL(1 - 8).
[0,3) [3,10) [10,100)

Delay Tolerance The application has a MTD of X .
[0,256) [256,1024) [1024,+∞)

Activation Sensitivity The application’s activation reduction is X% compared to the baseline when 2048 cycles delay
is applied to the FR-FCFS pending queue. [0,10) [10,20) [20,100)

T hRBL Sensitivity The application’s maximum activation reduction is X% compared to the baseline when reducing
its T hRBL from 8 to lower values. [0,5) NA [5,100)

Error Tolerance The application shows X% application error when using our proposed value approximation
technique (Section IV-D) at 10% coverage or its maximum available coverage less than 10%. [20,+∞) [5,20) [0,5)

user-defined coverage again in consecutive 4096-cycle windows.
These steps are repeated until the end of application execution.

D. Value Prediction Unit

The Value Prediction Unit (VP unit) is responsible for
approximating the values of requests that are dropped by
the AMS unit. Since the VP unit works independently and
is orthogonal to the memory scheduling schemes, we can
support a large variety of previously proposed value prediction
mechanisms such as [10]–[12], [26]. Similar to prior works,
AMS uses programmer annotations to bound the approximation
errors as the criticality of instructions presumably could only
be identified by the programmer [27]–[31]. AMS requires the
following information from the programmer, as shown in the
example of Listing 1: a) the approximable loads which are
error tolerant, and b) the prediction coverage which limits the
total number of approximations.

#pragma pred_coverage{10%}
#pragma pred_var{B}
C[i] = A[i] + B[i];

Listing 1: Example of Code Annotation

To demonstrate how AMS works, we designed a simple but
effective VP unit that is based on the intuition that nearby
addresses may store similar values and hence the value of
a cache line can be approximated by a nearby cache line
with limited error [10]. In order to predict the values for

the dropped requests, we search in the nearby cache sets
of the L2 cache and use the values from cache lines with
nearest addresses as their approximate values.2 To minimize
the searching overhead, we carefully choose the search radius
of nearby sets and take advantage of the existing associative
search hardware to search in the cache ways of a set. We
find that the searching overhead is negligible compared to the
performance improvement introduced by value approximation.
We will discuss the performance and output quality results in
Section V. Note that we first warm up the L2 cache with a
sufficient number of requests to prepared for the searches, and
thus AMS is initially disabled until the cache is ready.

E. Hardware Overhead

The DMS unit requires one comparator and one adder to
do comparisons for the functionalities of DMS. One 16-bit
counter is required for Static-DMS and Dyn-DMS to store
the current delay value of X. For Dyn-DMS, the DMS unit
requires one 32-bit counter to store the baseline BWUTIL,
one 32-bit counter to store the current BWUTIL, one 16-bit
counter to store the cycles during profiling, one 8-bit counter to
store the number of windows during profiling. The AMS unit
requires one multiplier, one adder and one comparator for the

2In this simple model, we did not consider the error propagation caused by
the reuse of approximated cache lines. However, we have tested with a more
advanced model (that considers reuse) and have observed similar application
error results.
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Fig. 12: Comparison of different schemes with different metrics for applications with Medium or High Error Tolerance. Row Energy
and IPC results are normalized to the baseline that does not adopt DMS or AMS.

operations of AMS. Static-AMS and Dyn-AMS require 1 bit
to store the read/write condition and 1 bit to store the current
memory space condition for the row of the oldest request, two
64-bit counters to store the total number of requests and the
total number of approximated requests for calculating coverage,
one 8-bit counter to store the RBL of the current request’s row,
one 8-bit counter to store the current T hRBL, one 32-bit counter
to store the index of the dropped request’s row. For Dyn-AMS,
the AMS unit requires one 16-bit counter to store the cycles
during profiling.The VP unit requires nine adders, one MUX,
one comparator for searching the nearest cache line, one 8-bit
counter to store the radius, one 64-bit counter to store the tag
of the dropped read request, two 64-bit counters to store the
minimal tag distance and its corresponding address. Overall, the
lazy memory scheduler requires 1 multiplier, 11 adders, 1 MUX,
3 comparators and 498 bits of buffer space in addition to the
baseline memory controller. We believe this hardware overhead
is modest in comparison to the energy savings provided by
DMS and AMS. Finally, our mechanisms do not require any
modification to the existing DRAM protocols.

V. EXPERIMENTAL RESULTS

We evaluate our lazy memory scheduling techniques on
a wide range of applications described in Table II. The
applications are selected so as to cover all important features
that are relevant to our schemes. We list these features and their
intensity classifications (e.g., Low, Medium, High) in Table III.
We use annotations to make sure that we only approximate
global read requests which do not contain pointers or lead to
fatal errors so that value approximation can be applied to all
applications safely. For the ease of presenting results in this
section, we group these applications into 4 different groups:
Group-1: These applications have high or medium error
tolerance and also show high T hRBL sensitivity. Therefore,
both AMS and DMS can be applied and likely to benefit.

Group-2: These applications have high or medium error
tolerance, thus the AMS related schemes can be applied.
However, they show low T hRBL sensitivity, so Dyn-AMS may
not show clear benefits in terms of activation reduction.
Group-3: These applications have high or medium error
tolerance, thus the AMS related schemes can be applied.
However, since they either have very few requests associated
with RBL(1 - 8) (Low Thrashing Level), or have very limited
rows that are only accessed by read requests when opened,
their coverages cannot reach 10%.
Group-4: These applications have low error tolerance and thus
the AMS related schemes should not be applied. However, for
these applications, the DMS schemes can still be applied for
reducing the number of row activations.
Effect on Row Energy. Figure 12(a) shows the normalized
row energy across all schemes. We make four observations.
First, overall the Static-DMS and Dyn-DMS are able to reduce
row energies by 8% and 12%, respectively. Second, overall
the Static-AMS is able to reduce 33% of row energy, which is
more than that of the Static-DMS schemes. The Dyn-AMS does
not show improvement over the Static-AMS for Group-2 and
Group-3 applications. However, Group-1 applications overall
show 7% row energy reduction in the Static-AMS and 11% in
the Dyn-AMS. Third, for Group-1 and Group-2 applications,
when combining Static-DMS and Static-AMS together, their
average row energy reduces by 27%. This is 7% more than
when Static-DMS and Static-AMS are applied separately.
When combining Dyn-DMS and Dyn-AMS together, it shows
the largest row energy reduction of 34%. This reduction is
7% more than when applying Static-DMS and Static-AMS
together, and is 13% more than the total reduction of when
applying Dyn-DMS and Dyn-AMS separately. Finally, when
applying Dyn-AMS together with Dyn-DMS, Group-1, Group-
2 and Group-3 applications overall achieve 44% row energy
reduction. However, a few Group-3 applications (i.e., 3MM,
meanfilter, laplacian) show less row energy reduction
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Fig. 13: Effect of pending queue size on the number of activations (normalized to the baseline) with DMS(2048).

than the other AMS related schemes. This is due to a small
coverage decrease as shown in Figure 12(d) because Group-3
applications already have limited coverage and the profiling of
Dyn-DMS reduces the number of requests dropped by Dyn-
AMS (Section IV-B).

Effect on Memory Energy and Peak Bandwidth. The lazy
memory scheduler’s benefit in row energy reduction is caused
by the improvement of the application’s Avg-RBL. Therefore,
it is independent of the memory technology used as long
as it adopts similar structures as the row buffer. However,
system-wise, its energy reduction is dependent on the memory
technology. For example, if we apply Dyn-DMS and Dyn-AMS
together on HBM1 where row energy constitutes nearly 50%
of the memory system energy [6], we observe on average 22%
memory system energy reduction with our tested applications.
Similarly, for HBM2 where row energy can constitute 25% of
its total energy, we observe on average 11% memory system
energy reduction. Traditionally, the overall power budget of a
high-end GPU card is limited to around 300W and its memory
power budget is generally capped at 60W when operating at
peak bandwidth. [7]. Therefore, in terms of absolute savings
with HBM2, the lazy memory scheduler can achieve: a) up to
8W memory power reduction while achieving the same peak
bandwidth or b) up to 90 GB/sec higher peak bandwidth under
the same 60W memory power budget.

Effect on Performance. Figure 12(b) shows the changes in
IPC across all schemes. Overall, we find that all our schemes
do not lose more than 5% IPC. We make three observations.
First, the Static-DMS and Dyn-DMS show larger IPC losses
because of the additional delay. Also, the IPC of Dyn-DMS can
approach closer to the 95% threshold, resulting in more row
energy reductions. Second, the Static-AMS and Dyn-AMS show
IPC improvement. Specifically, overall Dyn-AMS shows more
improvement than Static-AMS, indicating that it can improve
more performance by potentially dropping the requests in rows
with lower RBLs. Finally, when combining Static-DMS and
Static-AMS together, overall the IPC improves by 2%. When
combining Dyn-DMS and Dyn-AMS together, overall the IPC
loss is less than 1%. Both cases show higher IPC than the
Static-DMS or Dyn-DMS scheme, because of the usage of
AMS. We conclude that all our schemes are able to effectively
restrict the IPC loss to be less than 5%. Specifically, AMS
can help to compensate for the IPC loss caused by DMS. The
combination of DMS and AMS can provide a good trade-off
between row energy reduction and performance loss.

(a) Accurate Output (b) Approximate Output

Fig. 14: Comparison between the accurate and the approximate
output (which has 17% Application Error and is generated when
the Dyn-DMS and Dyn-AMS schemes are applied together) for
application laplacian.

Effect on Application Error. Figure 12(c) shows application
errors across all schemes. Note that the application error for the
Static-DMS and Dyn-DMS are all zeros because no approxima-
tion is applied. We find that with our VP unit design, different
applications show different application errors, meanwhile for
each application, there are only small differences of application
error with similar prediction coverages (Figure 12(d)) across
different schemes. With the 10% coverage limitation, the
average application error is 7% for all the AMS related schemes.
Figure 14 shows the image output of application laplacian
for the accurate baseline case and the Dyn-DMS and Dyn-AMS
combination case. We observe that with 17% application error,
the image shows a limited level of quality degradation. We
conclude that under our VP unit design, limiting the coverage
is an effective way to limit the application error. Moreover,
value approximation is a feasible way to reduce row energy
and improve performance as many applications can tolerate
certain levels of error and are suitable for applying the AMS
schemes. We also expect to see significant application error
reduction if the AMS related schemes are applied together
with the previously proposed value prediction techniques [10]–
[12], [26] because they are more sophisticated and have shown
much less application output quality loss when working with
the same 10% coverage limitation.
Effect of FR-FCFS Pending Queue Size. When applying
DMS, more requests are likely to be piled up in the pending
queue, increasing the possibility to find row hits. However, if
the pending queue is frequently full, future requests may often
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Fig. 15: Comparison of different schemes in the delay-only mode
for applications with Low Error Tolerance.

be blocked from entering it, limiting the Avg-RBL improvement
of DMS. Therefore, it is important that the pending queue size
is sufficient to support the increased pending requests in DMS.
Figure 13 shows the effect on the number of row activations
when using different pending queue sizes with the maximum
allowed delay (i.e. DMS(2048)). And starting from size 128
the activation numbers for all applications tend to be stable.
We conclude that a pending queue size of 128 (i.e., the baseline
size) is sufficient to apply DMS.
Delay-Only Mode for Low Error Tolerance Applications.
For applications with low error tolerance, even if AMS cannot
be applied, we can still use DMS to reduce their row energy.
Figure 15(a) and (b) show normalized row energy and IPC,
respectively for Group-4 applications with the DMS schemes.
We make two observations. First, both Static-DMS and Dyn-
DMS can reduce row energy for Group-4 applications (one
outlier is Static-DMS for application 2MM). Also, Dyn-DMS can
more effectively reduce row energy than Static-DMS. Second,
both Static-DMS and Dyn-DMS have less than 5% IPC loss.
And the IPC of Dyn-DMS can approach closer to 95% of
the baseline. We conclude that for applications with low error
tolerance, the DMS schemes can still effectively reduce their
row energy with no more than 5% IPC loss. Dyn-DMS reduces
more row energy by trading off a little more performance.

VI. RELATED WORK

To the best of our knowledge, this is one of the first works
in the context of GPUs that consider the interplay between
memory scheduling and application’s tolerance to latency and
errors. Our mechanisms achieve significant memory system en-
ergy savings while allowing the underlying hardware to remain
dependable both in terms of performance and correctness [32]–
[34]. Several prior works in the CPU domain [35]–[42] have
focused on improving the row buffer locality. The goal of
these works was to reduce the DRAM access latency because
it is a first-order performance concern in single-threaded CPU
workloads [43]–[45]. Other memory scheduling techniques for
CPUs propose to partially delay the write request [39], [40], or
conditionally employ an open-row policy [41], [42] to improve
the row buffer locality. But the purposes of these works are still
to reduce the overall DRAM access latency. In contrast, DRAM

access latency is not a primary concern in GPGPU applications
as GPUs are capable of hiding long memory access latencies
by spawning thousands of concurrent threads. Hence, in this
paper, we exploited this property to further enhance the row
buffer locality for GPU memory.

In the context of GPUs, Jog et al. [16] proposed a criticality-
aware memory scheduling mechanism to trade-off row buffer
locality for servicing latency-critical requests. However, it will
likely increase the DRAM energy consumption due to sub-
optimal row buffer locality. Prior work on warp scheduling
and throttling policies [9], [46], [47] can also improve the
row buffer locality. However, these throttling/warp-scheduling
decisions and memory scheduling decisions do not always
remain in sync as they are taken physically far away from each
other and are conducted at different granularities. This makes
it important to design new memory scheduling decisions (as
we do in this paper) that consider the current DRAM status.
Moreover, we believe our work is complementary to these prior
works as they can provide additional benefits by shaping the
access patterns such that they can benefit DMS and AMS.

VII. CONCLUSIONS

This paper focused on improving the DRAM row buffer
locality in GPUs to reduce the memory system energy con-
sumption. To this end, we proposed a lazy memory scheduler
that can work in two modes: delayed or approximate. In the
delayed mode, it carefully delays the scheduling of memory
requests to allow more of them to accumulate at the memory
pending queue. Such a mechanism increases the visibility of
the memory scheduler thereby improving the chances of finding
more requests that can be served by reusing the data in the
row buffer. In the approximate mode, it carefully identifies a
small fraction of requests with low row buffer locality and
does not issue them to the DRAM banks. Instead, a simple
but effective value predictor can be used to approximate the
values for such requests. We also find that both these modes
are synergistic and improve the effectiveness of each other
when employed together. Our evaluation across a variety of
GPGPU applications shows that row energy can be reduced by
12% with delayed memory scheduling, 33% with approximate
memory scheduling, and 44% with a combination of both
schemes. We hope that this paper can open up new research
directions that consider the interactions between scheduling,
error resilience, and latency tolerance techniques at different
levels of the memory hierarchy.

ACKNOWLEDGEMENTS

We thank our shepherd, Mattan Erez, and anonymous review-
ers for their detailed feedback which significantly improved
the quality of this paper. We also thank the members of the
Insight Computer Architecture Lab for their helpful comments.
This material is based upon work supported by the National
Science Foundation (NSF) grants (#1657336, #1717532, and
#1750667). This work was performed using computing facilities
at the College of William & Mary.

12



REFERENCES

[1] “Top500 Supercomputer Sites - November 2018,” https://www.top500.
org/ lists/2018/11/ .

[2] “The Green500 List - November 2018,” https://www.top500.org/
green500/ lists/2018/11/ .

[3] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the Future of Parallel Computing,” IEEE Micro, vol. 31, 2011.

[4] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie, “Half-
DRAM: A High-bandwidth and Low-power DRAM Architecture from
the Rethinking of Fine-grained Activation,” in ISCA, 2014.

[5] J. Trajkovic, A. V. Veidenbaum, and A. Kejariwal, “Improving SDRAM
Access Energy Efficiency for Low-power Embedded Systems,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 7, 2008.

[6] N. Chatterjee, M. OConnor, D. Lee, D. R. Johnson, S. W. Keckler,
M. Rhu, and W. J. Dally, “Architecting an Energy-Efficient DRAM
System for GPUs,” in HPCA, 2017.

[7] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W.
Keckler, and W. J. Dally, “Fine-grained DRAM: Energy-efficient DRAM
for Extreme Bandwidth Systems,” in MICRO, 2017.

[8] D. Wong, N. S. Kim, and M. Annavaram, “Approximating Warps with
Intra-warp Operand Value Similarity,” in HPCA, 2016.

[9] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir,
O. Mutlu, R. Iyer, and C. R. Das, “OWL: Cooperative Thread Array
Aware Scheduling Techniques for Improving GPGPU Performance,” in
ASPLOS, 2013.

[10] J. San Miguel, J. Albericio, A. Moshovos, and N. Enright Jerger,
“Doppelganger: A Cache for Approximate Computing,” in MICRO, 2015.

[11] J. San Miguel, J. Albericio, N. Enright Jerger, and A. Jaleel, “The Bunker
Cache for Spatio-Value Approximation,” in MICRO, 2016.

[12] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh,
O. Mutlu, and T. C. Mowry, “Rfvp: Rollback-free value prediction
with safe-to-approximate loads,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 12, 2016.

[13] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing
CUDA Workloads Using a Detailed GPU Simulator,” in ISPASS, 2009.

[14] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch: Enabling Energy Optimizations
in GPGPUs,” in ISCA, 2013.

[15] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory Access Scheduling,” in ISCA, 2000.

[16] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and
C. R. Das, “Exploiting Core Criticality for Enhanced Performance in
GPUs,” in SIGMETRICS, 2016.

[17] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu, “MISE:
Providing Performance Predictability and Improving Fairness in Shared
Main Memory Systems,” in HPCA, 2013.
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