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ABSTRACT

Data transfer overhead between computing cores and mem-
ory hierarchy has been a persistent issue for von Neumann
architectures and the problem has only become more chal-
lenging with the emergence of manycore systems. A con-
ceptually powerful approach to mitigate this overhead is
to bring the computation closer to data, known as Near
Data Computing (NDC). Recently, NDC has been investi-
gated in diferent lavors for CPU-based multicores, while
the GPU domain has received little attention. In this paper,
we present a novel NDC solution for GPU architectures with
the objective of minimizing on-chip data transfer between
the computing cores and Last-Level Cache (LLC). To achieve
this, we irst identify frequently occurring Load-Compute-
Store instruction chains in GPU applications. These chains,
when oloaded to a compute unit closer to where the data
resides, can signiicantly reduce data movement. We develop
two oloading techniques, called LLC-Compute and Omni-
Compute. The irst technique, LLC-Compute, augments the
LLCs with computational hardware for handling the com-
putation oloaded to them. The second technique (Omni-
Compute) employs simple bookkeeping hardware to enable
GPU cores to compute instructions oloaded by other GPU
cores. Our experimental evaluations on nine GPGPU work-
loads indicate that the LLC-Compute technique provides, on
an average, 19% performance improvement (IPC), 11% per-
formance/watt improvement, and 29% reduction in on-chip
data movement compared to the baseline GPU design. The
Omni-Compute design boosts these beneits to 31%, 16% and
44%, respectively.
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1 INTRODUCTION

The memory wall has been a major impediment to designing
high performance von Neumann style computing systems.
With the recent manycore trend, the cost of moving data
from diferent levels of the memory hierarchy to the cores
has further accentuated the memory wall problem [1, 33, 57].
This is likely to become more challenging with technology
scaling as more transistors are squeezed into larger dies exac-
erbating the relative cost of moving data to that of a compute
operation. Thus, the performance and energy overheads of
data movement would be a continuing non-trivial challenge
in designing high-performance, energy-eicient systems.
Processing-In Memory (PIM) and Near Data Computing

(NDC) [15, 21, 27, 50, 58] concepts have been proposed to
minimize these overheads by moving computation closer to
data. Recent advances in technology have made computa-
tional logic cheaper, plentiful and easier to integrate. NDC is
an abstract framework that requires answering several key
design questions Ð what to oload, where to oload and when
to oload. For example, in a traditional multi-level memory
hierarchy, computation oloading can be done to the on-chip
caches or of-chip DRAM and the granularity of computation
would vary depending on where the computation is done.

Traditionally, NDC mechanisms have allowed CPUs to
further improve their performance and energy-eiciency.

*This work was started when Onur Kayiran was at Penn State.
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However, to our knowledge, the NDC concept has been lit-
tle explored in the context of GPU architectures. As GPUs
are likely to play a major role in achieving energy-eicient
Exascale systems, further scaling of their performance and
energy-eiciency is a critical task [56]. With technology
scaling, the relatively high data movement costs in GPUs
are starting to bottleneck further energy-eiciency improve-
ments. The overheads of data movement are greatly accen-
tuated in GPUs due to three major reasons. First, GPU appli-
cations are highly data parallel, and therefore, work on large
amounts of data. Second, as GPUs scale, compute through-
put improvements are outpacing the memory bandwidth
improvements, hence, worsening the memory wall problem.
Finally, state-of-the-art GPUs have many more cores [14, 48]
that need a larger network-on-chip [7, 35] to connect them
with memory, leading to an increased data movement and
traversal costs. Furthermore, many prior works [16, 17] have
identiied on-chip interconnect bandwidth to be a bottleneck
as well. These reasons have made it imperative to ind novel
mechanisms to further enhance energy eiciency of GPUs.
Recent works [27, 50] have studied the PIM concept in GPUs,
where they minimize of-chip data movement by facilitat-
ing computation at 3D-stacked DRAMs. To the best of our
knowledge, prior NDC eforts do not optimize on-chip data
movement in GPUs. Thus, the goal of this paper is to min-
imize on-chip data movement between the GPU cores and
the LLC for improving performance and energy eiciency.
It is non-trivial to make GPUs amenable to NDC mecha-

nism due to three main reasons. First, GPUs are load-store
architectures, and the ALU operations are performed only
on registers. Therefore, inding candidates for oloading in-
volves searching for suitable instruction sequences. Second,
GPUs are SIMT architectures and their fetch, decode and
wavefront scheduling units are tuned for hiding memory
latency by executing many parallel instructions. Speciically,
GPUs try to execute as many instructions as possible from
other threads to hide a cache miss, which in turn would lead
to longer latencies to oload a set of instructions from a
given thread. Hence, eiciently oloading a set of instruc-
tions involving multiple loads that incurred L1 misses from
a given thread, while minimizing the execution of the other
threads is a challenging issue. Third, due to the need for
massive memory-level parallelism, data is interleaved across
multiple memory partitions. If oloaded instructions require
data frommultiple partitions, it is not straightforward to ind
a łsinglež location to perform the oloaded computation.

The decision of what to oload is crucial for the efective-
ness of NDC mechanisms. Ideally, one would like to ind
sequences of instructions that can be oloaded as a whole to
minimize data movement. Our NDC mechanism irst inds
suitable instruction sequences for computational oloading,
called oload chains, that corresponds to commonly used

basic, high level instructions that appear across many appli-
cations. We use a compiler pass to tag the oloadable chains.
Next, to address where to oload the computation, we in-
troduce the term, Earliest Meet Node (EMN), which is the
irst intersecting node of the loads in the oload chain on
their traversal paths. We then form a łComputePacketž of
these instructions that can be pushed to the EMN for com-
putation. To perform the oload, we propose two computa-
tional oloading mechanisms. The irst one, LLC-Compute,
is employed when the EMN is the LLC node itself. By pro-
viding the required computation hardware in the LLC, the
computation can be performed there. The second scheme,
Omni-Compute, is employed when the EMN is an interme-
diate GPU node in the network; it oloads the computation
to another GPU node, which is en route between the source
GPU node and LLCs. Omni-Compute provides the necessary
additional bookkeeping logic to the GPU cores to be able to
compute instructions oloaded by other cores beyond the
logic needed to execute its own instructions. We show that
simply sending all oloadable chains to the EMN for com-
putation is not optimal in terms of performance due to its
implications on data locality. Therefore, when to oload the
chains is critical for the eiciency of the NDC mechanism.

To our knowledge, this is the irst work that considers re-
ducing on-chip data movement in GPUs by opportunistically
oloading computations either to (1) the last-level-caches,
or (2) the ALU of another GPU core that would result in the
lowest on-chip data movement for that computation. This
paper makes the following major contributions:
• It proposes two NDC schemes to facilitate computational
oloading inGPUs. It shows that basic forms of load-compute-
store instructions are ideal candidates for oloading.
• It provides (i) compiler support for tagging oloadable in-
struction chains, (ii) the architectural modiications required
for forming ComputePackets, (iii) the computational units
and (iv) the controller units for LLC-Compute and Omni-
Compute with negligible hardware overheads.
• It comprehensively evaluates our proposed NDC mecha-
nisms using nine general purpose GPU workloads. The LLC-
Compute technique provides, on an average, 19% and 11% im-
provement in performance (IPC) and performance/watt, re-
spectively, and 29% reduction in on-chip data movement com-
pared to the baseline GPU design. The Omni-Compute design
boosts these beneits to 31%, 16% and 44%, respectively, by
providing additional oloading opportunities.

2 BACKGROUND

Programming Environment: The parallel parts of
CUDA [47]/OpenCL™ [43] applications, are called łkernelsž.
A kernel contains multiple workgroups. The GPU hardware
dispatcher schedules workgroups onto cores. The threads
within a workgroup are organized into groups, called łwave-
frontsž. Wavefronts are the granularity at which the GPU
schedules threads into SIMD pipeline for execution.
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Figure 1: Baseline architecture.

Architecture: The evolution of GPU architecture indicates
that the GPU compute capability is scaling along with
the number of cores. Recent AMD Radeon™ RX Vega 64
GPUs [14] and NVIDIA® Tesla® V100 GPUs [48] are already
equipped with 64 compute units (CUs) and 84 streaming mul-
tiprocessors (SMs), respectively. Fig. 1 shows our baseline
GPU architecture. Each core has a private L1 data cache, a
texture cache and a constant cache, along with a software-
managed scratchpad memory (shared memory). The cores
are connected to shared last-level cache (LLC) partitions via
a Network-on-Chip (NoC). Each LLC partition is directly
connected to a memory controller. In our baseline archi-
tecture, we model a GPU with 56 cores and 8 last-level
cache (LLC)/memory controllers (MCs) connected through
an (8×8) mesh-based NoC [31, 65] (YX routing) as shown
in Fig. 1. The MC placement in our baseline GPU is a varia-
tion of the checkerboard coniguration, which is shown to be
throughput-efective for GPUs when compared with other
MC placements [7]. This placement allows for eicient link
usage, while minimizing link hotspots that arise due to di-
mensional routing for traditional MC placements.

Fig. 1 shows the micro-architecture of a core. To execute
a wavefront, the fetch unit irst fetches the next instruction
from instruction cache based on the program counter (PC).
The fetched instruction is decoded and placed into an instruc-
tion bufer for execution. This bufer is hard partitioned for
each wavefront, and the decoded instructions are stored on
a per-wavefront basis. The fetch-decode happens in a round-
robin manner for all the wavefronts in a core. This keeps the
pipeline full so that on a context switch, a new wavefront is
ready to be issued immediately. In our baseline coniguration,
the bufer can hold two decoded instructions per wavefront,
limiting only two instructions from a particular wavefront
that can be issued continuously for execution. Also, when a
wavefront encounters an L1 miss, the wavefront scheduler
will switch out the current wavefront with another ready
wavefront to hide the memory latency.

3 MOTIVATION AND ANALYSIS

Today’s GPUs use separate instructions for memory accesses
and ALU operations. Fig. 3 shows an example code frag-
ment of an addition operation performed on operands a

and b and stored in operand c. This instruction is broken
down into multiple load/alu/store operations in a load-store
architecture. The loads fetch the required data from the
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tion/ejection ports and LLC/DRAM service. The aver-

age of all applications is shown.

caches/memory into the registers of the core. The data could
potentially come from the L1 cache, LLC or the of-chip main
memory. Ideally, if all the memory requests are hits at the
L1 cache, there will be minimal undesirable data movement
apart from the data movement caused by cold misses.
Fig. 2(a) shows the amount of data being fetched from

diferent levels of the memory hierarchy for nine applica-
tions. On average, only 23% of the available data is fetched
from the L1 cache, while 30% is fetched from the LLC and
the remaining 47% is fetched from the DRAM. We provide
the detailed performance and energy eiciency evaluation
methodology in Sec. 5. Fig. 2(b) shows the breakdown of
the average memory latency of requests (L1 misses) across
nine applications during their traversal from the cores to
the LLC nodes and back. We observe that almost 75% of the
memory latency is due to the queuing of the packets in the
injection queue at the LLC nodes, 16% of the time is spent
servicing these requests, while the rest 9% is taken up by
the NoC traversal. NoC traversal constitutes the cost of VC
allocation + route computation + switch allocation and link
traversal [12]. These observations are mainly due to three
reasons: (1) read to write ratio; (2) burstiness of the requests
and; (3) traic patterns in GPUs. Note that, the request traic
sends requests frommultiple cores to a few LLCs/MCs, while
in the response network, a few LLCs/MCs send data (with
a higher payload) to multiple cores. These reasons cause a
disparity between the efective request/service rate of the
cores (more request packets can be sent) and LLCs nodes
(fewer response packets can be sent). To summarize, 77% of
the requested data is transferred over the on-chip interconnect,
which contributes to an average power consumption of 27% of
the total GPU power. Therefore, the implications are twofold.
First, we need to reduce the amount of data transfers over
the network, and second, exploit computations rather than
waiting for data that is queued up in the network.

3.1 Analysis of Data Movement

To reduce the on-chip datamovement, we need to understand
and analyze the low of data from diferent levels of the
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Figure 3: Earliest Meet Node for an instruction se-

quence (c[i]= a[i]+b[i]). For each memory opera-

tion, the request and response packets’ traversal with

YX routing is shown. All memory requests generate

from core 15. The two loads and store head to LLC 5,

LLC 6 and LLC 7, respectively. For this instruction se-

quence, the EMN is core 36.

memory hierarchy to the cores. Let us consider two scenarios
for the low of data during the execution of code snippet on
core 15 in Fig. 3.
Scenario 1: Let both the load requests and the store request
go to the same LLC partition (assume in Fig. 3, the memory
requests are all en route to LLC 5). When load a is executed,
a memory request is sent to LLC 5, which takes 8 hops to
traverse from core 15 to LLC 5. Upon receiving the request,
the LLC partition services it (returns the data if the request
hits in LLC; forwards it to memory channel if the request is a
miss) and sends a response packet with the data back to the
core taking another 8 hops. This is also the case with load

b. In total, it takes 32 hops to request and get the data back
for the two load instructions. Finally, a store request is sent
which takes another 16 hops to store the data and receive an
acknowledgment. Therefore, to compute c[i]=a[i]+b[i],
a total of 48 hops is required for the instruction sequence
for each wavefront. Note that, the payload of the packets
in the response traic is considerably larger than request
traic. If we assign weights to the payloads with 1:5 ratio
(req/ack:data), the total weighted hop count is 144.
Scenario 2: Let us assume a scenario, where all three mem-
ory requests go to diferent LLC partitions (Fig. 3). In this
case, a is mapped to LLC 5, b is mapped to LLC 6 and c

is mapped to LLC 7. Getting the data for load a takes 16
hops and for load b, 10 hops. The store c is sent to LLC 7
and takes another 16 hops. Therefore, a total of 42 hops are
needed for this computation. By considering the weights for
each payload, the total weighted hop count is 126.

3.2 How to Reduce Data Movement?

To reduce data movement, we propose a new concept, called
Earliest Meet Node (EMN). We observe that on the traversed

path for both the load instructions, if we re-route the re-
sponse messages with load data back to the request node
in the same route as the request messages, there is a com-
mon node (LLC 5 in Scenario 1 and core 36 in Scenario 2 as
shown in Fig. 3) through which the data for both the loads
pass, albeit not necessarily at the same time. This node is
the EMN for the instruction sequence of a given wavefront.
Potentially, the computation (in this case ś addition) can be
performed at EMN and then, only an ack is sent back to the
requesting core from the EMN on a successful computation.
For example, in Scenario 1, both the loads (along with

the information of the store) can be sent as a single request
(detailed in Sec. 4) from core 15 to the EMN (8 hops to LLC
5), and then the loads can be serviced at the LLC. Assuming
the EMN can compute, the operation is performed once both
the loads have been serviced. The store is then serviced by
the same LLC, and an ack is sent back to core 15 (8 hops)
indicating that the oload was successful. Therefore, the
entire compute sequence requires 16 hops (reduced by 67%).
Furthermore, the total weighted hop count reduces to 16 hops
(reduced by 89%) as well. Similarly, for Scenario 2, shown in
Fig. 3, if both the loads and the store were sent as a single
request (details in Sec. 4) to the EMN (3 hops to core 36), and
then if the two loads are split and sent to their respective
LLCs (5 hops (LLC 5) + 2 hops (LLC 6) = 7 hops), it would
take a total of 10 hops. On their way back, rather than going
back to core 15, both a and b can be sent to the EMN (5 + 2 =
7 hops). After computation, the result (c) can be sent directly
to the LLC 7 (5 hops). The ackmessage for the store operation
takes another 5 hops to reach the EMN. Finally, from the
EMN, an ack notifying of a successful computation is sent
to core 15 (3 hops). This approach would require a total of
30 hops (reduced by 29%) and a total weighted hop counts
of 78 hops (reduced by 38%). Note that, we do not change
the routing policy (YX) or introduce any network deadlock
when we re-route the response packets via the EMN. We only
decouple the response packets from its precomputed route
to the core and instead send it to the EMN. This changes
the route of the packet, while still following the routing
policy. Based on this motivation, we propose a novel GPU
design to dynamically build oload chains at runtime and
make intelligent decisions for opportunistically oloading
computations onto a location closest to where the required
data is present, while minimizing data movement.

4 OPPORTUNISTIC COMPUTING

The main idea of the NDC mechanism is to irst ind candi-
date oload chains in a GPU application and to compute this
chain opportunistically as close as possible to LLCs. To this
end, we propose two schemes: LLC-Compute and Omni-
Compute. The irst scheme, LLC-Compute (Sec. 4.2), re-
duces data movement for oload chains for which the
operands are found in the same LLC partition. An oload
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packet, which we call as ComputePacket, traverses to the
destination LLC for computation and returns the result/ack
back to the core. The second scheme, Omni-Compute
(Sec. 4.3), is built on top of LLC-Compute and increases
the coverage of operations, whose data movement can be
further reduced, by enabling oloading for chains that re-
quest data from two diferent LLC partitions. In this case, the

Identify Offload Chains

Form ComputePacket at 

SRC and send to EMN

Compile-time
Runtime

Yes

Yes

EMN computes and 

sends back ack to SRC

Offload Chain?
No

No

Execute

Is it offloadable?

Figure 4: Key steps

to realize computa-

tion ofloading.

ComputePacket is sent to the EMN
(another core), where the computa-
tion is performed. We discuss the pro-
cess of inding the EMN in Sec. 4.3. If
the data is placed on diferent LLCs
with no common node in their YX/XY
routes, then there is no EMN, and
thus, computational oloading is inef-
fective. For example, in Fig. 3, if core
15 sent two loads to LLC 0 and 6, there
is no common node, and therefore, no
EMN. Fig. 4 shows the steps in facil-
itating our proposed mechanisms: (1)
identify oloadable chains by using
compiler analysis to check for code
patterns and register reuse and then

tag the oloadable instructions; (2) during execution, ei-
ciently identify and execute oload chain; (3) dynamically
decide whether the computation can be oloaded or not; (4)
form ComputePackets eiciently and keep track of oloaded
chains; and (5) enable computation at EMN (LLC/cores).

4.1 What to Ofload?

For applications with good L1 cache locality, oloading loads
for computation without caching them locally would in-
crease unnecessary data movement for these loads. There-
fore, the ideal candidates for such computation oloading
are the applications that are streaming in nature or have a
long reuse distances that render the L1D cache inefective.
Note that, LLC-sensitive applications are also going to be
beneicial, as our proposed mechanisms reduce the on-chip
data movement between the cores and the LLCs.
It is well known that applications have diferent charac-

teristics during their execution, and even if the entire ap-
plication cannot be oloaded, certain phases/sequences of
instruction from applications can still beneit from computa-
tion oloading. Therefore, rather than enabling computation
oloading for the entire application, we propose to oload
computation at the granularity of an instruction or a set of in-
structions, which could correspond to a high-level language
statement such as the one shown in Fig. 3. Note that, loads
with further reuse at the core should not be oloaded, as it
will negatively impact the L1D locality. Conservatively, we
prioritize L1D locality over computation oloading. For this
work, we target such instruction sequences that are amenable
to computation oloading and are prevalent in many difer-
ent types of applications such as machine learning kernels,

Table 1: Prevalent high-level code patterns along with

their PTX instructions [46]. The response packet (type

and size) details the amount of data that is sent back

by the computation node to the source core.

Pattern 1 2 3 4 5 6 7 8 9

HLL code c=f(a,b) c=f(a,b,c) c=a c=f(a,c) h(a,b) h(a, i) c=f(a,i) d=f(a,d,g(b,i)) c=f(a,g(b,i))

ld a ld a ld a ld a ld a ld a ld a ld b ld b

P
T
X
C
o
d
e ld b ld b st c alu c,a ld b ld i ld i ld i ld i

alu c,a,b alu c,a,b st c cmp a,b cmp a,i alu c,a,i ld a ld a
st c st c alu c,b,i alu c,b,i

alu d,a,c alu d,a,c
st d

Response ack, data, ack, ack, bitmap, bitmap, ack, data, ack,
Packet 1 lit 5 lits 1 lit 1 lit 1 lit 1 lit 1 lit 5 lits 1 lit

i = immediate f(x,y),g(x,y) = arithmetic operator h(x,y) = logical operator

linear algebra algorithms, cryptography, high performance
computing applications and big-data analytics. Table 1 shows
nine types of instruction sequences that we ind amenable
for oloading. Note that more oload patterns can be formed
using longer instruction sequences, but we concentrate only on
patterns that can be packed into a single lit. Fig. 5 shows the
ComputePacket format for the largest sequence.
Header Opcode(s) Status/ID bits addr_a addr_b addr_c imm extra

3 Bytes 4/8 bits 1 Byte 6 Bytes 6 Bytes 6 Bytes 4 Bytes 5 Bytes
32 Bytes 

= 1 Flit

Figure 5: ComputePacket format for Pattern 9.

All nine patterns that we oload for computation start
with a load instruction and end either with an ALU operation
or a store operation. We call this sequence of instructions
that can be oloaded as an oload chain. For this work, we
tag the instructions in the applications that are potentially
going to be oloaded at compile-time. These instructions
can be easily found with a single compiler pass, and with
multiple passes the compiler can even generate statically
the data locality information [9] of the loads used by these
instructions to make decisions for computation oloading.
During execution, these tagged instructions get executed by
the hardware, which selectively (based on the L1 locality)
generates a single packet for computation oloading.

4.2 LLC-Compute

LLC-Compute oloads chains where all the operands are
headed towards the same LLC partition. We now describe
the steps of LLC-Compute design.
Identiication of Ofload Chains: In order to ensure that
oloading is not performed in the presence of high L1 local-
ity, we use compiler analysis to identify the oload chains
that are expected to improve performance if oloaded. The
compiler identiies oloadable instructions based on their
łper-threadž reuse patterns. Note that our approach does not
take into account the reuse distance of the memory request.
If it inds no register reuse of the memory request by the
same wavefront, it will tag it for oloading.

We analyze the Parallel Thread Execution (PTX) ISA [46]
generated by the CUDA compiler [47]. By default, each
load/store instruction in the PTX code is preceded by its
efective ofset calculation that is needed for address genera-
tion. We demonstrate this with an example in Fig. 6, which
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// Offset calculation for a

...

ld.param.u64 %rd3, [_cuda_a]

add.u64 %rd4, %rd3, %rd2

ld.global.s32 %r15, [%rd4+0];

// Offset calculation for b

ld.param.u64 %rd5, [_cuda_b]

add.u64 %rd6, %rd5, %rd2

ld.global.s32 %r16, [%rd6+0];

add.s32 %r17, %r15, %r16;

// Offset calculation for c

ld.param.u64 %rd5, [_cuda_c]

add.u64 %rd8, %rd7, %rd2

st.global.s32 [%rd8+0], %r17;

// Offset calculation for a,b,c

...

ld.param.u64 %rd3, [_cuda_a]

add.u64 %rd4, %rd3, %rd2

ld.param.u64 %rd5, [_cuda_b]

add.u64 %rd6, %rd5, %rd2

ld.param.u64 %rd5, [_cuda_c]

add.u64 %rd8, %rd7, %rd2

ld.global.s32 %r15, [%rd4+0];[01]

ld.global.s32 %r16, [%rd6+0];[10]

add.s32 %r17, %r15, %r16;[10]

st.global.s32 [%rd8+0], %r17;[11]c
[
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Figure 6: Representative code snippet. The ofload

chain is tagged and rearranged in the PTX code to

align contiguously in memory.

shows a code snippet in high-level language and its corre-
sponding PTX instructions. First, ofset for a is calculated,
and then a is loaded. The case is similar for b. In our approach,
as shown in Fig. 6, we modify the compiler to transform the
PTX code so that the ofset calculations for the loads/store for
the oload chain are executed earlier, and the oload chains’
instructions are contiguously stored. This reduces the pro-
cessing time to form a ComputePacket. Also, similar to prior
work such as TOM [27], our compiler tags the opcodes of the
oloadable instruction sequences with two bits to indicate
the irst, intermediate and the last instructions in the oload
sequence. Speciically, we tag the irst load with the bits 01
and then the intermediate PTX instructions with 10 until the
inal instruction, which is tagged as 11 indicating the end
of the chain. Furthermore, these tags also allow for eicient
wavefront scheduling that is computation oloading aware,
as discussed later in this section.
Hardware Support for Ofloading: Fig. 7 shows the re-
quired hardware changes (in black) to the baseline architec-
ture for our two proposed mechanisms. It also shows the
connections needed for LLC-Compute andOmni-Compute to
be integrated with the GPU design. Fig. 8 provides the de-
tailed implementation of the components (Oload Queue
and Service Queue). We irst describe the hardware additions
needed for LLC-Compute. To enable oloading, we add an
additional component called the Oload Queue (OQ) ( 3 ),
which is responsible for generating, oloading, and main-
taining the oloaded chains status. As shown in Fig. 8(a), OQ
is made up of three components: Oload QueueManagement
Unit (OQMU) ( 4 ), Oload Queue Status Register (OQSR) ( 5 ),
and ComputePacket Generation Unit (CPGU) ( 6 ). The OQMU
is the controller unit. It (1) decides whether to oload com-
putation or not based on EMN computation and L1 locality,
(2) initiates computation oloading, (3) manages the OQSR,
and (4) receives the result/ack for oloaded computation.
The OQSR is a 48-entry (Sec. 6.2) status register to maintain
the status of the oloaded chains. CPGU is responsible for
generating a ComputePacket with the computed EMN based
on both the load requests’ LLC partitions and injecting it into
the network for transmission. We give a detailed explanation
of how these components are utilized in Sec. 4.4.
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Eicient ComputePacket Formation: While the OQ is
responsible for generating ComputePackets, it has no con-
trol on how instructions are fetched and decoded, and how
wavefronts are issued. Therefore, relying only on the OQ for
generating ComputePackets is not optimal in terms of perfor-
mance due to two reasons. First, due to limited instruction
bufers (Sec. 2), not all the instructions in an oload chain
can be issued close in time. Furthermore, instruction fetch
and decode takes place in a round-robin fashion for all the
wavefronts, thus, leading to large queuing delays for issuing
any remaining instructions in an oload chain of a given
wavefront. Second, due to the baseline wavefront scheduling
policy (Sec. 2), each load in an oload chain (that results in
a cache miss) will cause the wavefront to be switched out
for another wavefront. Therefore, in order to issue two loads
from the same wavefront, many other wavefronts get exe-
cuted. This leads to partially illed OQSR entries for many
wavefronts. Only when all the oload chain instructions of
a given wavefront are executed, a ComputePacket is formed.
This leads to longer latencies in creating ComputePackets.
Moreover, the CPGUwould need to maintain bufers for each
partial ComputePacket leading to higher overheads.

To mitigate the efects of wavefront scheduling and avoid
the overheads of implementing a CPGU with large bufers,
we modify the wavefront scheduling policy (Fig. 7 2 ) along
with the instruction fetch and decode logic (Fig. 7 1 ) to pri-
oritize ComputePacket formation. We achieve this by making
the instruction tags in oload chains known to them. On
the irst instruction fetch of a wavefront with the tag [01],
we prioritize the fetch and decode of this wavefront over
other wavefronts. Therefore, whenever a single entry in the
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Figure 8: Design of (a) Ofload Queue, and (b) Service

Queue.

instruction bufer for this wavefront becomes empty, the
fetch unit prioritizes the fetch for this wavefront over other
wavefronts and decodes it and stores it in the available bufer
space. Similarly, on the wavefront scheduler logic, we priori-
tize the wavefront that is issuing the oload chain. When the
inal instruction (tagged [11]) in the oload chain has been
fetched, decoded and issued, the fetch, decode and wavefront
scheduling logics fall back to their default scheduler logic.
This reduces the latency for the creation of a ComputePacket,
enabling better injection into the interconnect by interleav-
ing the generation and injection of the ComputePackets. This
also minimizes the storage overheads for the CPGU, as it
only needs to maintain the full oload chain information for
only one wavefront at any given moment. Once an instruc-
tion in the oload chain is added to the OQSR, it is treated
as committed, after which other instructions in the oload
chain are issued and executed, allowing the formation of
ComputePackets. Only the inal instruction in the oload
chain will cause the wavefront to stall and wait for an ack.
Hardware Support for Enabling Computation at the
LLC Partitions: To enable oloading to LLC partitions, we
need to add computation unit, logic to decode ComputePack-
ets, and status registers for bookkeeping of the oloaded
computations to the LLC partitions. The irst addition is
a 32-wide single-precision loating point and integer ALU
(Fig. 7 9 ) in order to compute the oload chains. We keep it
to be 32-wide to maintain the same ALU latency as to that of
a core. The second addition is a multiplexer on the network
interface (Fig. 7 7 ). The multiplexer directs the packet to the
Service Queue or the LLC based on whether the header bit
identiies it as a ComputePacket or not. The third addition is
a component called the Service Queue (SQ) (Fig. 7 8 ), which

further comprises of three units as shown in Fig. 8(b): Ser-
vice Queue Management Unit (SQMU) (Fig. 8(b) 10 ), Service
Queue Status Register (SQSR) (Fig. 8(b) 11 ), and a temporary
bufer (4 entries) (Fig. 8(b) 12 ) to queue up multiple oload
chains for computation. The SQMU decodes the received
packet, updates the SQSR entries, and generates the required
load requests to send to the LLC. SQSR is a 96-entry (Sec. 6.2)
status table, and it maintains the addresses of the load and
store requests of the oload chains. The SQSR then sends
the load requests to the LLC and once data is available in the
LLC, the LLC sends signals to the SQ to update the availabil-
ity bit for the oload chain in the SQSR1. Note that, if the
load request resulted in an LLC miss, we do not diferentiate
between the regular memory requests and the memory re-
quests from an oload chain at the DRAM request scheduler.
Prioritization techniques can be employed to improve the
performance further, but we leave this as potential future
work. A temporary bufer holds the oload chains’ data. The
bufer entries are illed on a irst-come irst-serve basis for
the oload chains. The bufer ills the gap between the time
it takes to read required data from LLC and bring them to SQ
to feed to the ALU for computation. By having ready entries
in the bufer, we can hide the latencies for other requests
to be serviced and fetched from LLC into the bufer. If the
bufer is full, no new loads are fetched from the LLC. Once
an entry is ready to be computed, the data is moved from
the bufer to the temporary registers, which are then fed
to the ALU. Every cycle, if required, the bufer fetches the
required data from LLC based on the status bits of the SQSR
entry (to make sure it is present in the LLC), to maintain a
set of compute-ready data. Once the computation is inished,
SQMU removes the entry from SQSR. It then generates and
injects an appropriate response packet to send to the core
based on the type of oload chain.

4.3 Omni-Compute

As discussed in Sec. 3, EMN for an oload chain need not be
an LLC partition. Thus, we propose Omni-Compute, which
adds support for oloading computations to other cores,
which are the EMN for a given oload chain.

Unlike LLC-Compute, inding the EMN in Omni-Compute
is not straight forward because the required data is present in
diferent LLC partitions. Algo. 1 details the mechanism that
is used to ind the EMN (example in Fig. 3). For a given GPU
coniguration, a simple lookup table can be populated using
Algo. 1 and be used to ind the EMN during GPU execution.
The basic idea for inding an EMN is to ind a node that is
common in the traversal paths (XY or YX routes) of the two
loads. If there are multiple common nodes in their paths,
EMN is the node that is closest to both the LLC nodes.

1We do not send data from the LLC until it is needed for computation,

which is initiated when all the required operands are present in the LLC.

By exploiting the LLC to store data, we avoid any data storage overheads.

Pre-Print



ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA A. Patnaik, et al.

Algorithm 1 Finding EMN for 2 loads

INPUT: core_node // Denotes the oloading GPU core node
l lc_nodes[0/1] // Denotes the destination LLC nodes for the loads

1: if l lc_node[0] == l lc_node[1] then return l lc_node[0]. //LLC-Compute scenario

2: for i ← 0 to 1 do
3: traversal_path[2i] = xy_path (core_node, l lc_node[i])
4: traversal_path[2i + 1] = yx_path (core_node, l lc_node[i])

5: for i ← 0 to 1 do
6: for j ← 2 to 3 do
7: common_nodes .append (traversal_path[i] ∩ traversal_path[j])

8: for nodes n in common_nodes do
9: dist =manhattan_dist (n, l lc_node[1]) +manhattan_dist (n, l lc_node[2])
10: if dist < min_distance thenmin_distance = dist ; EMN = n

11: return EMN .

In order to provide the ability to oload ComputePackets
to any node, we add a Service Queue (SQ) to all the cores
(Fig. 7 8’ ). The SQ used in the cores is diferent from the one
used in LLC partitions only in its input/output connections.
Rather than sending load requests directly to the LLC queue,
the SQ injects the load requests into the interconnect for
transmission to their respective LLC partitions, receives the
data from the LLCs, and updates the SQSR accordingly. In
LLC-Compute, the SQ uses the LLC as a storage for the loads,
whereas, in Omni-Compute, for the SQs in the cores, we
reuse the shared memory as the storage structure to bufer
the loads as they are received. Once the entry is ready to be
computed, the data is transferred from the shared memory
to the temporary registers, which are fed to the ALU of the
core. Note that SQ only reuses the ALU when it is idle and
stalls if it is in use by the core/wavefront scheduler. As
Omni-Compute enables computation at any node, a higher
number of oload chains can ind EMNs and therefore be
oloaded. This may leave core resources under-utilized. On
the other hand, as Omni-Compute oloads computation to
other cores, the SQs at these cores will make use of the ALUs
and improve core utilization. Note that the computations
and bookkeeping are done by the GPU core. Therefore, we
do not make any modiication to the router/interconnect.

4.4 How Does Our MechanismWork?

In this section, we describe how LLC-Compute and Omni-
Compute work under multiple scenarios.

4.4.1 Mechanism to Ofload Computation. Let us refer to
Fig. 6, when the irst load instruction (tagged [01]) is fetched
and decoded. The wavefront that the instruction belongs to
is prioritized for fetch and decode until the inal instruction
in the oload chain that belongs to the same wavefront is
fetched and decoded. This wavefront is then de-prioritized.
Similarly, when the irst instruction gets issued by the Wave-
front Issue Arbiter, that wavefront gets prioritized for issuing.
Starting from this point, we show how computation is of-
loaded using Fig. 9. The Wavefront Issue Arbiter issues the
irst tagged instruction in an oload chain to the LD/ST unit,
which forwards it to OQ ( 1 ). There could be three possible
scenarios after the irst load is issued.
Scenario 1: L1 Lookup is a hit: The instruction is sent to
the OQ and the OQSR is updated ( 2 ). Simultaneously, an
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Figure 9: Scenarios for computation ofloading.

L1D lookup is performed and the status is returned to OQ
( 3 ). In this case, the L1D lookup was a hit. This would cause
the oload chain to be discarded and regular execution of
the instructions to resume. If the load being executed was a
second load in the sequence (assuming the irst load was a
miss), and this was a hit in the L1D cache, the OQSR entry
is lushed and the irst load is sent to the LLC partition ( 4 ).
Note that, the irst load does not execute again but does incur
a 1-cycle latency to generate the packet and push into the
interconnect. This additional cycle amortizes as the memory
requests being fetched from LLCs take 100s of cycles.
Scenario 2: OQSR is full:When the irst load in the oload
chain is sent to the OQ, and OQSR is full, the oload chain is
discarded and the wavefront resumes normal execution ( 2a ).
The second load cannot cause this as the irst load would
have either reserved an entry in OQSR or had been discarded.
Scenario 3: ComputePacket is formed: When all the
loads are misses in the L1D cache ( 3b ), if the computed
EMN is compute capable, and when the inal instruction
in the oload chain is issued and the OQSR is illed ( 2b ), a
ComputePacket is formed and injected into the network ( 4b )
and the wavefront is stalled until the EMN sends back the
result/ack to continue execution. If the EMN is not compute
capable, the OQSR entry is lushed and the loads are sent
individually. For example, in LLC-Compute, only the LLC
nodes are capable of computing the oloaded chains.

4.4.2 Mechanism to Execute Ofloaded Computation. When
a packet is ejected from a router, a header bit is checked to
determine if it is a ComputePacket. If it is, then it is sent to the
Service Queue (SQ) (Fig. 10 5 ). Fig. 10 shows three possible
scenarios when a ComputePacket is received.
Scenario 1: EMN is an LLC partition: When a Com-
putePacket is received, the SQMU decodes the packet, ills a
new entry in the SQSR and updates the respective bits ( 6 ).
Two loads for a and b are sent to the LLC partition ( 7 ). When
any of the loads is serviced by the LLC (once it is available
in the cache), an update message from the LLC is received
( 8 ), and the status bit for the particular load is set. When
both the loads are available, the Ready bit (see Fig. 8 ( 5 )) is
set. Then, the SQ sends load requests to the LLC ( 9 ), and
the data is brought into the bufer 10 . If the bufer is full, the
SQ stalls until the bufer has an empty entry. Once the entry
is ready in the bufer, the entry is popped and sent to the
temporary registers which transmit the data to the ALU for
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Figure 10: Scenarios when ComputePacket is received.

computation and receive the results back 11 . Once the result
is received, based on the status bits, the store is forwarded
to its corresponding LLC partition and an ack is sent to the
core that oloaded the computation ( 12 ). When the core re-
ceives the ack, the wavefront resumes regular execution and
proceeds to remove the entry from its OQ ( 13 ).
Scenario 2: EMN is a compute capable core: The compu-
tation oloading process at a core is similar to oloading to
LLC. The only diference being, the SQ receives the Com-
putePacket, requests for the loads from the respective LLCs
( 7a ), fetches ( 8a ) and stores them in shared memory ( 9a ).
The shared memory location is stored in the SQSR rather
than the memory address. Similarly, when both the loads are
received, the data is fetched from the shared memory to the
bufer ( 10 ). The rest of the process is similar to Scenario 1.
Scenario 3: SQSR at EMN is full: When the SQSR is full
(either the ones at the LLC or core), upon a ComputePacket
being received by the SQ ( 5 ), the SQMU generates two loads
and send them to LLC for servicing ( 6a ). It tags the memory
requests as non-oloadable, causing the memory requests
to go back to the core that oloaded them. These loads will
reach the core ( 7b ), and the OQMU will check if this was an
ack or not. Upon inding a load rather than an ack, the OQSR
entry appropriately updates itself to highlight the status of
the loads (a_present, b_present). Once the computation is
done, the entry is removed from OQSR, a store request is
sent, and the wavefront resumes regular execution.

4.5 Limitations of Computation Ofloading

In this work, we only consider oload chains whose loads are
cache miss to preserve as much locality as possible. Further-
more, the issues of address mapping and data placement play
a big role in whether an oload chain can be computed at the
EMN or not. For example, due to the LLC placement, there
can be oload chains with two load requests without any
overlapping nodes during their NoC traversal, and therefore,
no computation oloading is performed. Additionally, due to
the lock step execution of wavefronts (Sec. 2), applications
with high degree of control-low and irregular access pat-
terns may lead to control-low divergence and memory-level
divergence, respectively. This can cause signiicant amount

of diferent computations to take place for diferent threads
in a wavefront and multiple memory requests to be gener-
ated per wavefront, respectively. This would result in multi-
ple ComputePackets from a single wavefront to be generated,
leading to higher bookkeeping overheads. In case of only
memory divergence, the ComputePacket is generated such
that each instruction can only generate a single memory
request (threads that require other data will be inactive in
the warp mask). Currently, for wavefront divergence, we
have warp mask bits in OQ and SQ for each entry, while
we handle memory divergence by passing the mask bits in
another lit attached to the ComputePacket. Divergence can
be mitigated by smarter data and compute placement [67] or
by eiciently forming wavefront dynamically [19]. However,
we do not explore such optimizations, but rather provide
the hardware design for enabling computation oloading.
Also, as shared memory is used by the core and the SQ, we
have to make sure it is not overprovisioned. Conservatively,
we oload only in situations where the shared memory is
large enough to accommodate the needs of both core and
SQ. During compilation, we check the shared memory usage
in the kernel and disable computation oloading if needed.
Need for Hardware Optimizations: The end result of re-
ducing data movement can also be achieved using compiler
analysis to dynamically compute the desired indices (thereby
changing the required data) for the threads to work as shown
in [61]. However, compiler-based optimizations rely heavily
on static analysis and cannot adapt themselves to dynamic
behavior of applications/runtime parameters. For example,
inding EMN at compile time for all the computations re-
quires prior knowledge of address mapping, data placement,
compute placement (thread-block and wavefront schedul-
ing), and other architecture speciic parameters. Most of
these parameters are not exposed to the compiler, and also
change dynamically during runtime (e.g., data migration,
compute placement, etc.). Not having all the required a priori
knowledge will make the analysis of the compiler incomplete.
Therefore, it will not completely optimize the computation
oloading for reducing data movement. Also, other hard-
ware optimizations such as forming macroinstruction for
the oload chains can be performed. But, using macroin-
struction will lead to larger hardware overheads as multi-
ple memory requests will need to be decoded concurrently.
Therefore, handling a macroinstruction will require multi-
ple fetch/decode/load-store units. If request generation is
serialized, it efectively becomes similar to our scheme.

5 EXPERIMENTAL METHODOLOGY

Simulated System:We simulate the baseline architecture
as mentioned in Table 2 using GPGPU-Sim v3.2.2 [6]. We ex-
tensively modiied GPGPU-Sim to implement our proposed
schemes. OQ and SQ were added to the GPU datapath and
integrated into the core model. We add an ALU and a Ser-
vice Queue to the LLC datapath. We model the GPU cores,
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Table 2: Coniguration parameters of the GPU.

GPU Features 1.4GHz, 56 cores, 32 SIMT width, GTO wavefront scheduler
Resources/Core 48KB shared memory, 64KB register ile, Max.

1536 threads (48 wavefronts, 32 threads/wavefront)
Private Caches/Core 16KB L1 D-cache, 12KB T-cache,

8KB C-cache, 4KB I-cache, 128B block size
L2 Cache 0.5MB/Memory Partition, 16-way 128 KB Line size
Memory Model 8 MCs, FR-FCFS, 8 banks/MC, 1000 MHz

Partition chunk size 128 bytes, 500 GB/s peak BW
GDDR5 Timing tCL = 11, tRP = 11, tRC = 39, tRAS = 28, tCCD = 2

tRCD = 11, tRRD = 5, tCDLR = 5, tWR = 12
Interconnect 8×8 2D Mesh, 1400MHz, YX Routing, 1 core/node, 8VCs,

lit size=32B, Bufers/VC=8, islip VC & switch allocators

Table 3: List of evaluated benchmarks. The patterns

listed here correspond to the patterns in Table 1.

Micro-benchmark Pattern

COMPARE 5
COPY-ALIGNED 3
COPY-STRIDED 3

DENSITY 6
VECADD-ALIGNED 1
VECADD-STRIDED 1

NORM 7

Workload Pattern Suite Dyn.Inst. Mem.Req.
BFS 2,6,7 CUDA 18% 47%
FDTD 1,2 PolyBench 7% 67%
KMN 2,4 Rodinia 23% 67%
MVT 1,2 PolyBench 25% 69%
RED 1,2 SHOC 16% 75%
SCP 2 CUDA 12% 67%
SRAD 1,2,3,7 Rodinia 3% 75%

STREAM 2,8 Rodinia 33% 67%
TRIAD 9 SHOC 18% 60%

cache and DRAM power using GPUWattch [37]. Based on
the injection rate obtained from the simulations, we conig-
ure DSENT [59] to ind the average power of the intercon-
nect. We run the applications until completion or 1 billion
instructions, whichever comes irst. The applications and
their inputs are large enough to ill the workgroup slots.
Benchmarks: We simulate multiple microbenchmarks that
are commonly present in many applications such as scien-
tiic computing, machine learning, linear algebra, big data,
etc. We also analyze 9 GPGPU workloads from SHOC [13],
PolyBench [23], CUDA SDK [47] and Rodinia [11] bench-
mark suites. Table 3 lists the evaluated microbenchmarks and
workloads. The microbenchmarks include: COMPARE, which
performs point-wise comparison of two strings to count the
number of diferent elements; COPY-X2, which copies one
array into another array; DENSITY, which counts the number
of 0’s in an array; VECADD-X, which sums two 1-D arrays and
stores the result in a third array; and NORM, which normalizes
a 1-D array with a given value. To highlight the signiicance
of the instructions that we optimize for, we show the fraction
of dynamic instructions and total memory requests (Table 3)
that can be oloaded. On an average, 17% of dynamic instruc-
tions and 66% of memory requests are tagged as oloadable.

The proposed techniques in this work require global mem-
ory accesses and are inefective towards applications that
are optimized using GPU features such as shared memory,
constant caches, etc. This does not necessarily mean that
the scope of the proposed techniques is reduced. Rather, by
rewriting applications tomake use of computation oloading,
it is possible to achieve better energy eiciency/performance.
Hence, as a proof of concept, wemodiied the RED application
that relies on shared memory to compute partial sums to

2X is either ALIGNED or STRIDED, indicating whether the memory ad-

dresses belong to same or diferent LLC nodes, respectively.

make use of global memory. We further develop a hybrid ver-
sion of the workload that combines the global memory and
shared memory approaches to ind a sweet spot in energy
eiciency/performance (Sec. 6.2). Similarly, applications us-
ing fused-multiply-add (fma), which require 3 diferent loads,
were broken down into multiply and add instructions, and
only the multiply instruction with 2 loads is oloaded and
the result is sent back to the core for accumulation with the
reused third load. However, our baseline execution results
use all the applications’ unmodiied version.
Hardware Overheads: We implement a 48-entry OQSR in
OQ and a 96-entry SQSR in SQ, which was empirically de-
cided as discussed in Sec. 6.2. The OQ also consists of OQMU
logic and 30 bytes of storage that is needed forComputePacket
generation, but the largest component is the OQSR. OQSR
needs roughly 330 bytes of storage. Considering all the regis-
ter/bufer overheads in SQ, it requires approximately 2.4kB of
storage. Current generation GPUs have L1 caches as large as
128kB in their cores [48], indicating that the area overheads
are negligible. We use CACTI [44] to model the additional
structures and integrate their leakage and dynamic power
requirements in our experimental results. For the additional
ALUs in the LLCs, we assume it to be similar to the power
and area of an SP unit in a core, which is modeled using
GPUWattch [37]. To ind the EMN at runtime, a lookup table
of 64 entries (8×8 combinations) is stored at each core that
uses MC ids to ind the EMN. All the EMNs for each combina-
tion of core and MCs are computed statically (using Algo. 1)
as the routing paths are static. The additional ALUs, EMN
lookup tables, and all the OQs and SQs require less than 1%
area of a high-performance GPU.

6 EXPERIMENTAL RESULTS

To evaluate the beneits of the proposed schemes, wemeasure
the GPU performance (instructions-per-cycle (IPC)), energy
eiciency (performance/watt), normalized average memory
latency and reduction in on-chip data movement (weighted
hop count). The weighted hop count is the sum of all link
traversals by lits, which indicates the total amount of on-
chip data movement. The average memory latency is the
round-trip latency of all the memory requests (L1 misses)
in an application. It is made up of the service delay and
NoC delay. Service delay is the time the LLC/DRAM takes
to access the memory and service the request. The NoC
delay consists of the traversal delay, the queuing time at the
injection/ejection bufers of the cores/LLCs. All results are
normalized to the execution of unmodiied workloads on the
baseline GPU without computation oloading.

6.1 Efects of Proposed Mechanisms

Efects of LLC-Compute: Fig. 11 shows the performance,
performance/watt and theweighted hop count beneits of our
LLC-Compute mechanism for seven microbenchmarks and
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Figure 11: Impact of proposed mechanisms on performance, power eiciency and weighted hop count.
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Figure 12: Percentage of ofloaded chains.

nine workloads. LLC-Compute increases the performance
and performance/watt for the workloads by 19% and 11%,
respectively. It also reduces the weighted hop counts for
the workloads by 29%. For the microbenchmarks, it achieves
performance and performance/watt improvement of 30%
and 23%, respectively. Fig. 12 shows the percentage of of-
loadable chains that were oloaded by the proposed mecha-
nisms. As mentioned in Sec. 4.5, not all oload chains can
be oloaded due to their data placement, cache behavior
and/or due to the lack of free slots in OQ/SQ. For appli-
cations such as COPY-ALIGNED, DENSITY, VECADD-ALIGNED,
NORM, RED and SCP, LLC-Compute is able to improve per-
formance immensely. This is due to the high amounts of
oloading as seen in Fig. 12. Applications such as COMPARE,
STREAM, KMN and SRAD achieve modest gains due to the rel-
atively less amount of oloading. The performance gains
achieved by oloading can be correlated with the reduction
in average memory latency of the packets as shown in Fig. 13.
Note that, Fig. 13 is the detailed version of Fig. 2(b). On an av-
erage, for the workloads and microbenchmarks, the average
memory latency reduces by 16% and 29%, respectively.
For applications like COPY-STRIDED, BFS, FDTD, MVT,

TRIAD and VECADD-STRIDED, we see that LLC-Compute is
not able to improve performance. Rather, in the case of FDTD,
the performance is slightly reduced and the weighted hop
counts slightly increased. FDTD and MVT do not show im-
provements because of good L1 locality, which leads to less
oloaded chains as seen in Fig. 12. The small amount of
oloaded chains also causes slight increase in L1 misses,
thereby counteracting any beneits in case of MVT, but slightly
reducing performance and increasing the data movement
for FDTD. For COPY-STRIDED, VECADD-STRIDED and TRIAD,
the reason behind the lack of beneits is due to the lack of
oload chains that can be computed at the LLCs. In BFS,
there are many oload chains, but due to wavefront and
memory divergence, the number of in-light oload chains
(each wavefront generates multiple oload chains) is much
larger than what OQ and SQ can service.
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Figure 13: Percentage reduction and breakdown of av-

erage memory latency.

Efects of Omni-Compute: Fig. 11 also shows the simula-
tion results for our Omni-Compute mechanism. With Omni-
Compute, performance and performance/watt for the work-
loads increase on an average by 31% and 16%, respectively.
For the microbenchmarks, it improves the performance and
performance/watt by 51% and 33%, respectively. It also re-
duces the weighted hop counts by 44% for the workloads and
by 61% for the microbenchmarks. Fig. 12 shows the percent-
age of oloadable chains that were oloaded by the proposed
mechanism. As shown in Fig. 13, on average, the average
memory latency for the workloads and microbenchmarks
reduces by 27% and 37%, respectively.
As Omni-Compute builds on top of LLC-Compute, it al-

lows for computation oloading at other GPU cores as well.
We see that applications such as COMPARE, COPY-STRIDED,
VECADD-STRIDED, KMN, SRAD, STREAM and TRIAD improve
greatly when compared to LLC-Compute. This is because
of the additional opportunities for computation oloading
to other cores that is available to Omni-Compute. Appli-
cations such as FDTD and MVT sufer even more than LLC-
Compute due to a reduction in L1 locality due to the increase
in computation oloading. Note that the cache behavior is
dynamic and by oloading computations, we do not get the
load requests back to the core, thereby, changing the ac-
cess pattern. Applications such as COPY-ALIGNED, DENSITY,
VECADD-ALIGNED, NORM, BFS, SCP and RED do not improve
much when compared to LLC-Compute because of their
respective data placement. Most of the oload chains are al-
ready oloaded to LLCs, making LLC-Compute good enough.
Fig. 14 shows the percentage of execution time when either
the core or the SQ is in contention for the ALU. In appli-
cations such as VECADD-STRIDED, FDTD, KMN and SRAD, the
contention for the ALU is relatively high compared to other
applications. This is due to the fact that not all oload chains
are oloaded and are left for the core to execute. Also, in
SRAD and KMN, there are many compute instructions apart

Pre-Print



ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA A. Patnaik, et al.

0%
3%
5%
8%

10%
P

e
rc

e
n

ta
g

e
 o

f 
 

E
x

e
c

u
ti

o
n

 T
im

e

Figure 14: Percentage of execution time when either

the core or the SQ contend for ALU.

from oload chains. This causes the SQ to contend for ALU
while the core is using it.

6.2 Sensitivity Studies

Interconnect Topology: We evaluated Omni-
Compute with multiple interconnect topologies: but-
terly (4-ary, 3-ly), crossbar (56×8), and mesh (8×8).
We also evaluated them with double their bandwidth.
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Fig. 15 shows the impact
of using Omni-Compute to-
wards average performance
across all the workloads for
each of the topologies. On
an average, the performance
of crossbar and mesh re-
main similar while the per-
formance improves by only
3% on butterly topology.

This is due to the large queuing delay at the injection ports
at the MCs as observed in Fig. 2(b). Even with decreased hop
count of butterly and crossbar, they do not afect the overall
latency of the requests by much. With Omni-Compute, the
performance of crossbar and butterly improves by 20% and
36%, respectively. The beneits in crossbar are not as much
as butterly and mesh. This is because, in crossbar, computa-
tions can only be oloaded to LLC nodes, while in butterly,
all the routers and LLC nodes are capable of computing. Fur-
thermore, butterly is able to achieve a higher performance
compared to mesh as it is able to oload chains that were not
oloadable in baseline (mesh) due to its dimensional routing
policy. Note that these improvements are due to the reduc-
tion in NoC delay similar to mesh in Fig. 13. Furthermore, we
also doubled the bandwidth of mesh, crossbar and butterly
and found that the performance improves by 27%, 23% and
24%, respectively. With Omni-Compute, it further improves
to 39%, 42% and 46%, respectively. This highlights the fact
that the on-chip bandwidth is a bottleneck in GPUs and dou-
bling the bandwidth is still not suicient to eliminate all the
congestion delays as we still achieve (albeit relatively lower)
performance improvements with Omni-Compute. Fig. 15
also shows the normalized area of using these topologies.
LLC Partition Placement: To analyze the impact of LLC
partition placement on Omni-Compute, we study a difer-
ent LLC placement [31] as shown in Fig. 16(a). Fig. 16(b)
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Figure 16: Impact of LLC placement. (a) LLC place-

ment, (b) Performance of new LLC placement.

shows the performance of Omni-Compute with the new LLC
placement. This LLC placement is easier for physical layout
implementation, but due to dimensional routing, it sufers
from higher link utilization on the edge links as seen from
the performance degradation when compared to our base-
line GPU (Sec. 2). On an average, the new placement scheme
leads to a performance degradation of 28% compared to the
baseline GPU.With Omni-Compute, the overall performance
improves by 56% compared to the no-oload execution. Note
that, the performance gains achieved by Omni-Compute for
this placement are relatively higher than the one achieved
for the baseline GPU. This is due to the fact that more com-
putation oloading can be done in this placement due to the
proximity of the LLCs (two LLCs are close to each other)
allowing more oload chains to ind a suitable EMN.
Shared Memory Optimizations: Applications such as
RED heavily make use of shared memory in GPUs. This
limits the scope of our computation oloading. To this
end, we modiied the source code of RED to make use of
global memory rather than shared memory. We also made
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mization.

multiple diferent variations that
use a hybrid approach consisting
of global and shared memory. Ini-
tial stages of reduction are done
using global memory, while the
later stages are done using shared
memory. Fig. 17 shows the perfor-
mance and weighted hop count for
ive diferent versions of RED us-
ing LLC-Compute. The irst is the

unmodiied version that uses only shared memory, while
the RED-Global performs using global memory. Similarly,
three diferent hybrid approaches (RED-HybridN) were pre-
pared where the irst N level of reduction happen in global
memory and then the following levels use shared memory.
RED-Hybrid2 achieves the best performance, and we use this
variant for our experimental analysis in Sec. 6.1.
OQ and SQ Size: To determine the size of OQ and SQ, we
performed a sweep of multiple (OQ entries, SQ entries) sizes
from (12, 24) to (128, 256) to ind a feasible design point. We
keep SQ size larger than OQ as each SQ will handle requests
frommultiple cores whereas each OQ is only used by its core.
The performance gains of Omni-Compute plateau at 34% for
(64,128) and onwards. This is because most of the oloaded
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chains can be accommodated and are not discarded due to
OQ/SQ being full. We choose the design point of (48,96) due
to the resident hardware wavefront limit of 48 for a core.
Speciically, without wavefront/memory divergence, there
can be a maximum of 48 oload chains from a given core.
The SQ size of 96 was chosen empirically.
Dedicated ALU Units: As mentioned in Sec. 4.3, in Omni-
Compute, the ALU is shared between the core and the SQ.
We also studied the efects of adding dedicated ALUs of vary-
ing SIMD-width towards the average performance improve-
ments (only for the 9 workloads) achieved by Omni-Compute.
We observe that, for a 4-wide, 8-wide, and 16-wide ALU, av-
erage performance degrades by 12%, 5% and 2%, respectively,
over the shared ALU scenario (the LLCs have dedicated 32-
wide ALUs). With a 32-wide ALU, the performance improves
only by 3% compared to shared ALU.

7 RELATED WORK

GPU Optimizations and Computation Ofloading:
There have been many studies in the past on optimizing
the GPU architecture [5, 19, 20, 29, 30, 32, 40, 55, 60, 62, 67]
and on computation oloading and scheduling [3, 4, 24, 25,
27, 45, 53, 54, 64, 68, 69]. Meng et al. [40] developed a dy-
namic warp/wavefront subdivision scheme where the wave-
fronts are split into smaller units and scheduled at a iner
granularity to reduce stalls. Zhang et al. [67] proposed mul-
tiple heuristics for removing the warp and memory diver-
gence using data reordering and job swapping. These propos-
als reduce the divergence in an application and can poten-
tially increase opportunities for oloading, therefore, com-
plementing our proposed NDC schemes. Moreover, many
prior works [7, 16, 17, 28] have identiied on-chip bandwidth
in GPUs to be a bottleneck as well.
Near Data Computing (NDC) Architectures: The idea
of moving computation closer to data is not new, since it
has been studied in diferent contexts including the memory
system, known as PIM [10, 21, 22, 36, 49]. While the PIM
concept can be traced back to early 1970s [58], due to tech-
nological limitations, it could not be fully realized. Recent
advances in 3D stacking technology have rejuvenated the
interest in PIM [2, 8, 18, 25, 34, 38, 39, 45, 50, 66]. Hsieh et
al. [27] proposed programmer transparent schemes for of-
loading code segments to PIM cores and co-locating code
and data together in a multi-PIM scenario. Tang et al. [61]
proposed a software approach, which partitions loop state-
ments into sub-statements to reduce data movement in a
CMP. Our work is diferent in two aspects. First, we tar-
get a GPU architecture, whose memory access pattern is
more complicated due to massive number of parallel threads.
Second, their approach requires synchronizations to ensure
correctness. Such synchronization is unsafe and very costly
in GPUs. Hashemi et al. [26] developed a dynamic scheme
that migrates computation to memory controllers to reduce
the cache miss latency in CMP. While their approach focuses

on dependent cache misses to the same memory controller,
our approach is more generic and we oload computations
to potentially any location including LLCs and other cores.
Any of-chip NDC techniques are complementary to our pro-
posal. Compared to prior eforts, we are the irst to explore
the notion of earliest-meet node in GPUs.
NoC Optimization: Prior works such as [42, 63, 70] have
proposed active networking, wherein routers have suicient
intelligence to perform simple operations on packets as they
low through them. Network packet inference at the routers
has been exploited by prior works such as [41, 51, 52] for
better congestion management. Kim et al. [35] developed
a packet coalescing mechanism for GPUs, that reduces the
congestion at the MCs, improves performance and reduces
data movement. Kim et al. [28] provide VC monopolizing
and partitioning support for better bandwidth eiciency in
GPUs. Bakhoda et al. [7] proposed a łcheckerboardž mesh
for throughput architectures. We use a variation of their
proposed LLC placement for our baseline GPU. While such
optimizations can help reduce network latency, the network
eventually becomes a bottleneck with large problems and
datasets. Our proposal can work hand in hand with these
techniques for added beneit.

8 CONCLUSION

In this paper, we present two complementary computation of-
loading techniques for minimizing on-chip data movement
in GPU architectures, and hence, improve performance and
energy eiciency. The irst technique enables computational
oloading to the LLCs, while the second technique comple-
ments the irst technique by adding oloading capability to
any node in the 2D mesh interconnect. We identify several
small and basic instruction chains in GPU applications that
can be oloaded to any one of the locations. The required
compiler support, hardware modiication to the cores and
LLC are presented to facilitate the NDC mechanisms. Simu-
lation results show that our proposed mechanisms are quite
efective for reducing on-chip data movement to improve
performance and energy eiciency in modern GPUs.
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