
RCoal: Mitigating GPU Timing Attack via
Subwarp-based Randomized Coalescing Techniques

Gurunath Kadam
College of William and Mary

Williamsburg, VA
gakadam@email.wm.edu

Danfeng Zhang
Penn State University

State College, PA
zhang@cse.psu.edu

Adwait Jog
College of William and Mary

Williamsburg, VA
adwait@cs.wm.edu

Abstract—
Graphics processing units (GPUs) are becoming default ac-

celerators in many domains such as high-performance com-
puting (HPC), deep learning, and virtual/augmented reality.
Recently, GPUs have also shown significant speedups for a variety
of security-sensitive applications such as encryptions. These
speedups have largely benefited from the high memory bandwidth
and compute throughput of GPUs. One of the key features to
optimize the memory bandwidth consumption in GPUs is intra-
warp memory access coalescing, which merges memory requests
originating from different threads of a single warp into as few
cache lines as possible. However, this coalescing feature is also
shown to make the GPUs prone to the correlation timing attacks
as it exposes the relationship between the execution time and the
number of coalesced accesses. Consequently, an attacker is able
to correctly reveal an AES private key via repeatedly gathering
encrypted data and execution time on a GPU.

In this work, we propose a series of defense mechanisms to
alleviate such timing attacks by carefully trading off performance
for improved security. Specifically, we propose to randomize the
coalescing logic such that the attacker finds it hard to guess the
correct number of coalesced accesses generated. To this end, we
propose to randomize: a) the granularity (called as subwarp)
at which warp threads are grouped together for coalescing,
and b) the threads selected by each subwarp for coalescing.
Such randomization techniques result in three mechanisms: fixed-
sized subwarp (FSS), random-sized subwarp (RSS), and random-
threaded subwarp (RTS). We find that the combination of these
security mechanisms offers 24- to 961-times improvement in the
security against the correlation timing attacks with 5 to 28%
performance degradation.

Index Terms—GPUs, Hardware Security, Coalescing

I. INTRODUCTION

Graphics Processing Units (GPUs) are becoming an in-
evitable part of every computing system because of their ability
to provide fast and energy-efficient computation. Given such
ability, GPUs are also now being used to accelerate a variety of
cryptographic algorithms. For example, the popular Advanced
Encryption Standard (AES) algorithm [21] is known to achieve
significant speedups on GPUs compared to CPUs [6], [9],
[17], [23] as the AES algorithm exposes abundant thread-
level parallelism to leverage high bandwidth and compute
throughput of GPUs. With such increasing popularity of GPUs
to accelerate security-sensitive applications, it is imperative to
keep GPUs secure against a variety of side-channel attacks
and other security vulnerabilities.

In this paper, we specifically focus on the correlation-based
timing attacks on GPUs. In general, a correlation-based timing

attack exploits the relationship between the secret data and its
impact on the processing time of an application: the attacker
sends a large number of data samples to calculate the correlation
between the actual processing time and the secret data. Among
the guessed values for the secret data, the one leading to the
highest correlation is the actual secret data. Notably, the recent
work from Jiang et al. [10] demonstrated a correlation-based
timing attack on a remote GPU server. They exploited two
observations. First, the number of coalesced memory accesses
in the last round can be deterministically calculated based on
the last round private key byte and the encrypted text. Second,
the number of coalesced accesses in the last round is correlated
with the total execution time. With these two observations, an
attacker can recover each key byte by picking the value that
best correlates with the recorded total execution time from the
remote GPU server1.

The goal of this paper is to design low-overhead defense
mechanisms to thwart timing attacks that exploit the memory
coalescing in GPUs. To this end, a straightforward solution is
to eliminate the correlation between the number of coalesced
accesses and the total execution time by disabling the memory
access coalescing mechanism completely. However, since the
memory access coalescing is one of the key features in
GPUs that optimizes the memory bandwidth consumption, the
disabling of coalescing will incur a heavy performance penalty
due to increase in the number of memory accesses [10], [15],
[16], [28]. To provide a better trade-off between security and
performance, we propose RCoal, a series of three tunable
coalescing mechanisms to guard against correlation-based
timing attacks.

The first mechanism focuses on tuning the granularity at
which threads are coalesced together, thereby increasing the
number of coalesced accesses at a finer granularity. We call this
technique as fixed-sized subwarp (FSS) defense mechanism,
where the size of subwarp determines the coalescing granularity.
FSS mechanism helps to reduce the correlation between the
coalesced accesses and total execution time by reducing the
variance in the coalesced accesses. Building on the first
mechanism, the second mechanism focuses on randomly
changing the size of each subwarp. We call this technique
as random-sized subwarp (RSS) defense mechanism where
the size of each subwarp affects the attacker’s ability to
correctly determine the number of coalesced accesses. The

1Section II presents more details on the attack.

1

final mechanism focuses on randomly changing the thread
elements of each subwarp. We call this technique as random-
threaded subwarp (RTS) defense mechanism as the coalescer
picks random thread elements to form a subwarp. RTS can be
applied to both FSS and RSS to further hinder the attacker’s
ability to determine the number of coalesced accesses correctly.

To the best of our knowledge, this is the first work to thwart
timing attacks in GPUs via randomized coalescing techniques.
In summary, this paper makes the following contributions:
•We generalize the correlation-based timing attack on GPUs

and show that the regularity and determinism in memory access
coalescing is a major security vulnerability.
• We propose three novel coalescing mechanisms to mitigate

the timing attacks arising from memory access coalescing.
These mechanisms revolve around carefully changing the size,
number, and thread elements of a subwarp to reduce the
correlation between the number of coalesced accesses and
the total execution time.
• We present a detailed information-theoretical analysis to

show that our randomized coalescing mechanisms can improve
the GPU security by 24 to 961 times. Our extensive simulation
results confirm the theoretical results and demonstrate that the
improved security can be achieved at a performance loss of 5
to 28%.
• We propose a new metric called RCoal Score that

provides an opportunity for hardware engineers to tune the
security and performance trade-off as per their requirements.
We discuss two such security-performance trade-off designs and
conclude that RSS and RTS mechanisms provide significant
advantages towards performance and security, respectively.

II. BACKGROUND

In this section, we briefly introduce a) the baseline GPU
architecture and the process of memory access coalescing, b)
the anatomy of AES encryption, and c) the baseline timing
attack assumed in this paper.

A. Baseline GPU Architecture
Overview. Figure 1 shows a high-level schematic of the GPU
architecture. A typical GPU consists of multiple cores, called
as streaming multiprocessors (SMs) in NVIDIA terminology.

SM

Warp Scheduler

PE PE. . .

Global Memory

Thread
1

Thread
32

WARP

Intra-Warp Coalescing Unit

. . .

WARP Pool

Thread
2

PE

LD/ST Unit

Fig. 1: Overview of Baseline GPU
Architecture.

Each SM takes advantage of
the Single Instruction, Mul-
tiple Threads (SIMT) pro-
gramming paradigm [14] to
schedule multiple threads
on its processing elements
(PEs). These threads are
scheduled at the granularity
of a warp, which is essen-
tially a collection of (usu-
ally 32) individual threads
that execute a single instruc-
tion on the PEs in a lock
step manner. Each SM can
execute multiple warps con-
currently in a multiplexed manner to hide the long global
memory latencies and improve the utilization of core resources

(e.g., register file, scratchpad memory). All SMs are connected
to global memory partitions via an on-chip interconnect. In
this paper, we evaluate the proposed techniques on a GPU
architecture simulated using a cycle accurate GPU simulator –
GPGPU-Sim [1]. More details on the simulated architecture
are given in Table I.

TABLE I: Key configuration parameters of the simulated GPU
configuration.

Core Features 1400MHz core clock, SIMT width = 32 (16 × 2)
Resources / Core 32KB shared memory, 32KB register file, 15 SMs

32 threads/warp, one subwarp per coalescing unit
Features immediate post dominator based branch divergence handling
Memory Model 6 GDDR5 Memory Controllers (MCs), FR-FCFS scheduling

16 DRAM-banks, 4 bank-groups/MC, 924 MHz
memory clock Global linear address space is
interleaved among partitions in chunks of 256 bytes [4]
Hynix GDDR5 Timing [7], tCL = 12, tRP = 12, tRC = 40,
tRAS = 28, tCCD = 2, tRCD = 12, tRRD = 6

Interconnect 1 crossbar/direction,
1400MHz interconnect clock, islip VC and switch allocators

Memory Access Coalescing. One of the effective ways to im-
prove the collective performance of the concurrently executing
threads on GPUs is to optimize the global memory bandwidth.
To this end, several techniques such as intra-warp memory
access coalescing, inter- and intra-warp request merging via
miss status handling registers (MSHRs), sectoring [28], and
L1/L2 caching have been proposed for GPUs. In this work,
we focus on intra-warp memory access coalescing technique,
which merges multiple memory requests from different threads
of the same warp in to as few cache line sized coalesced
memory accesses as possible.

The coalescing unit (part of LD/ST unit of the SM) performs
the agglomeration of memory requests from the threads in
a warp at a subwarp level, where the number of subwarps
is an architectural parameter. If the threads of a particular
subwarp request nearby data within a contiguous block of
the memory, their requests are coalesced together to avoid
redundant accesses. Therefore, if the memory access size,
subwarp size, and thread-data pattern (e.g., if/when thread
to table index mapping is known) are known, the number of
memory accesses can be calculated accurately. As per CUDA
programming guide [24], the scalar threads from the same
warp can be coalesced together (subwarp size of 1), at a half-
warp basis (subwarp size of 2) or at a quarter-warp basis
(subwarp size of 4). The subwarp size is decided based on the
size of the memory request from each thread. The generated
coalesced accesses are serviced at the rate that matches with the
underlying cache/memory bandwidth. To correctly simulate the
number of coalesced accesses as that of in the baseline attack
model (explained later in the section), we assume subwarp size
to be 1 in our baseline architecture.

To understand the effect of subwarps on coalescing, consider
an example with warp comprising of four threads under two
different cases employing the number of subwarps (num-
subwarp) as 1 and 2, respectively, as shown in Figure 2. We
assume that four threads generate four accesses and if perfectly
coalesced will generate one coalesced access (memory block).
When all the threads are considered together for coalescing
(i.e., Case 1: num-subwarp is 1), only three coalesced accesses
are generated as the requests from the second and third thread

2

Coalescing Unit

0x00 0x01 0x02 0x03

Three Coalesced Accesses

0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

Coalescing Unit

0x00 0x01 0x02 0x03

Four Coalesced Accesses

0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

0x04 0x05 0x06 0x07

CASE 1: number of subwarps = 1 CASE 2: number of subwarps = 2

From
Subwarp # 0

From
Subwarp # 1

0x00
tid = 0

0x04
tid = 1

0x07
tid = 2

0x09
tid = 3

0x00
tid = 0

0x04
tid = 1

0x07
tid = 2

0x09
tid = 3

Subwarp # 0 Subwarp # 1

Fig. 2: Effect of subwarps on memory coalescing.

are coalesced into one request. When num-subwarp is 2 (Case
2), the coalescing is performed independently for each subwarp.
Consequently, two coalesced accesses per subwarp (in total
four) are generated.

B. AES Encryption

Basics. The Advanced Encryption Standard (AES) [21] is
a widely used symmetric-key algorithm. The AES standard
specifies 128, 192, and 256 bits as the standard key lengths.
Without losing generality, we focus on AES-128, which
employs a 128-bit key to encrypt the plaintext. AES-128
algorithm consists of 10 rounds each with its own round
key of 16 bytes, which is generated from the encryption key.
In each round, subBytes() transformation (details of other
transformation can be found in prior works on AES [6],
[9], [17], [23]) performs a table look-up operation on the
substitution (S-box) table. In the last round, a table look-up
operation is performed on the T4 S-box table followed by
bitwise XOR operation with the last round key. This operation
is expressed by Equation 1 for the jth byte of output ciphertext
(cj) and ith input state of the last round (ti, table lookup
index) [6], [10]. T4 [] represents the last round S-box table
look-up operation whose result is XORed with jth byte of the
last round key (kj).

cj = T4 [ti]⊕ kj (1)

GPU Implementation of AES Encryption. A CUDA imple-
mentation of AES divides the plaintext across multiple parallel
threads to improve GPU throughput. Each thread performs
encryption on one line (block) of the plaintext. Therefore, each
warp consists of 32 threads performing 32 different encryptions.
The line to thread mapping is sequential and deterministic in
the baseline implementation. If the size of the plaintext exceeds
32 lines, then it is divided sequentially among several warps.
For example, a plaintext with 1024 lines will employ 32 warps
each executing 32 lines of the plaintext. Figure 3 shows the
encryption process for the last round on 32 threads of a single
warp. Each thread performs encryption of a byte (pj) of the
input text, where j varies from 1 to 16. All threads of the warp
work in a lock-step manner and perform the same table look
up operation (T4 [ti]) with different values of ti. The accesses
are coalesced together by the coalescing unit, and when the
replies come back, all threads use the same last round key (kj)
to generate one column of the ciphertext cj as per Equation 2.
In Equation 2, tid is the thread index.

… …

T4[titid]

T4[titid]

.

.

.

T4[titid]

cjtid

cjtid

cjtid

.

.

.

jth column of
ciphertext

Co
al

es
ci

ng
 U

ni
t

(fo
rw

ar
ds

 re
qu

es
ts

 to
 th

e
gl

ob
al

 m
em

or
y)

⊕ kj
Thread 1

Thread 2

Thread 32

Requests

.

.

.

.

.

.

Replies

⊕ kj

⊕ kj

.

.

.

Ciphertext

.

.

.

… …

Line # 1

… …

pjtid

pjtid

pjtid

.

.

.

… …

jth column of
input text

Line # 1

Plaintext

Fig. 3: Last round execution of AES-128 algorithm. The ti in
T4[ti] represents the index of the table lookup operation. kj and
cj represent the jth byte of the last round key and ciphertext,
respectively. tid is the thread id within a warp.

ctidj = T4

[
ttidi
]
⊕ kj (2)

C. Baseline Timing Attack
In this paper, we use the correlation timing attack proposed

by Jiang et al. [10] as the baseline attack. The attack model
assumes that the attacker sends a large number of plaintexts
to a remote GPU AES encryption server. The attacker collects
the ciphertexts and records the total execution time for each
plaintext. The goal is to correctly find all 16 last round key
bytes by exploiting a key observation that there is a high
correlation between the number of memory accesses and the
total execution time on GPU. The baseline attack targets the
last round key since it is the most vulnerable round and key
expansion is invertible (i.e., it is possible to derive the original
private key from any round key) [22]. The observation is that
each table lookup index in the last round can be computed
from a byte of the last round key (kj) and the corresponding
byte of ciphertext (cj), independent of other ciphertext bytes
(as shown in Equation 3). Thus, the attacker is able to observe
the security leakage separately at per-byte level.

ti = T−1
4 [cj ⊕ kj] (3)

Figure 4 shows the attack process for recovering the jth last
round key byte (kj). The attack process has two major steps.
The first step involves a guessed key value kmj where m ranges
from 0 to 255. According to Equation 3, the table lookup index
of each thread (ttid,mi) can be computed, as shown in Figure 4a.
Once the indices are obtained for all threads, the attacker can
calculate the expected number of coalesced accesses (Am,nj) for
the nth plaintext with the known and deterministic behavior of
coalescing (in our configuration, 16 consecutive table elements
are mapped sequentially to the same memory block). This
particular attack assumes num-subwarp to be 1 (i.e., all threads
in the warp are processed together for coalescing). This first
step is repeated for all possible 256 key byte guesses for the
jth byte and for N plaintext samples. As a result, a memory
access matrix is generated as shown in Figure 4b. Each row
of the matrix corresponds to the number of guessed memory
accesses for a particular key guess (m) across N plaintext
samples (Amj).

The second step involves calculating the correlation

3

… …

cjtid

cjtid

cjtid

jth column of
ciphertext

Thread 1

Thread 2

Thread 32

.

.

.

⊕ kjm

⊕ kjm

⊕ kjm

.

.

.
…

T4-1[]

T4-1[]

.

.

.

…

T4-1[]

…

titid,m

titid,m

titid,m

.

.

.

mth guess for jth

byte
Inverse

Table Lookup
Guessed Table
Lookup Indices

Guessed
Number of
Coalesced

Accesses (Ajm,n)

.

.

.

(a) Guessing the Coalesced Accesses from the Table Look up
Indices

Aj0,1, Aj0,2, . . . , Aj0,N E1,E2,...,ENKey
Guess 0

Key
Guess 1

Key
Guess 255

Corrj0

. . .

Corrj1

Corrj255

ρ(Aj0,E)

Correct Key
Guess α

Corrjα

. . . Maximum
Correlation

Aj1,1, Aj1,2, . . . , Aj1,N

Ajα,1, Ajα,2, . . . , Ajα,N

Aj255,1 ,Aj255,2 ,..., Aj255,N

E1,E2,...,EN

E1,E2,...,EN

E1,E2,...,EN

. . .

. . .

. . .

. . .

(b) Guessing the Last Round Key

Fig. 4: Overview of the process of guessing one of the correct last round key byte (kj). Am,n
j is the number of memory requests for

mth guess of the jth last round key byte using nth plaintext. n varies between 1 to N, where N is the number of plaintext samples.
m varies from 0 to 255 and j varies from 1 to 16.

15 20 25 30
Number of

Last Round Coalesced Accesses

1.0

1.1

1.2

1.3

No
rm

al
ize

d
Ti

m
e

Total Execution Time
Last Round Execution Time

Fig. 5: Relationship between
Last Round and Total Execution
Time.

between each row (key
guess) of the memory ac-
cess matrix with the last
round execution time (E)
to encrypt each plaintext
(collected by the attacker).
Since both the total and
last round execution time
correlate with last round co-
alesced accesses (shown in
Figure 5), the guessed key
value (α) is correct for kj
if it has the maximum correlation value (corrαj) with E. For
the rest of the paper, we assume a stronger attack with the
capability of accessing last round execution time as compared
to the realistic attack, which is weaker due to the noise in the
total execution time.

III. MOTIVATION AND GOALS

The primary reason behind the success of the baseline
correlation timing attack is the deterministic behavior of
memory access coalescing that allows accurate calculation of
the coalesced accesses generated. To verify this on our GPGPU-
Sim based simulation environment, we plot the correlation
values (corrmj) of all 256 possible values of m for 0th key
byte (k0, j=0). We calculate this correlation value between
the coalesced accesses from the attack and the execution time
of the last round of AES-128. From Figure 6a, we observe
that the correlation value is the highest (highlighted in red and
encircled) for the correct value of the 0th key byte among all
other guess values. We observe this trend for all 16 last round
key bytes indicating that we can successfully guess all of them.

As a first step towards defending against the baseline attack,
we aim to eliminate the relationship between the number
of coalesced accesses and the last round execution time by
disabling the coalescing mechanism. As a result, the number
of coalesced accesses will always be 32 (i.e., the worst case
scenario) from a warp with 32 threads. We executed the same
baseline attack with coalescing disabled to find that there is
no correlation between the number of coalesced accesses and
the last round execution time. Consequently, we could not
successfully guess any of the key byte. Figure 6b shows the
plot of correlation values against the possible values of the 0th

key byte. The correlation of the correct key byte is very close
to zero, so as that of other key guesses.

0 50 100 150 200 250 300
Possible values for key byte 0

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
rre

la
tio

n

(a) Coalescing Enabled

0 50 100 150 200 250 300
Possible values for key byte 0

0.05

0.00

0.05

0.10

Co
rre

la
tio

n

(b) Coalescing Disabled

Fig. 6: Effect of Coalescing on the Recovery of 0th Last Round
Key Byte (k0): a) Recovery is Successful when Coalescing
is Enabled, b) Recovery is Unsuccessful when Coalescing is
Disabled.

Although disabling the coalescing is an effective technique
to defend against the baseline correlation timing attack, absence
of memory access coalescing degrades the GPU performance
and energy efficiency significantly [10], [15], [16], [28]. Our
own experiments show that the performance degrades by up to
178% for AES-128 algorithm encrypting plaintext of 1024 lines.
Also, the data movement (i.e., the number of memory accesses)
increases by 2.7×. Therefore, disabling the coalescing is not
an attractive solution from the perspective of GPU efficiency.

In this paper, our goal is to design randomized coalescing
techniques to carefully balance the security and performance
trade-offs. Our techniques exploit two primary shortcomings
of the GPU AES implementation that lead to the successful
correlation timing (baseline) attack. First, all threads of a
warp are grouped in a single subwarp for coalescing. As
a result, the calculation of number of coalesced accesses
becomes straightforward: a) determine the requested table
look up indices, and then b) given that the table elements
are sequentially mapped to the memory blocks and the size of
each block is known, determine the number of memory blocks
(coalesced accesses) required. Second, because all threads of
the warp were considered together for coalescing, the order in
which the threads are grouped together had no impact on the
coalescing. However, if coalescing is performed at a subwarp-
level (with number of subwarp being more than one), the
order of grouping the threads would affect the total number of
coalesced accesses depending on which threads fall into the

4

same subwarp. To address these two shortcomings, we focus on
the following three randomized coalescing aspects to weaken
the correlation between the coalesced accesses calculated by
the baseline attack and the execution time from the encryption.
• Number of Subwarps: We choose the number of sub-

warps that is unknown to the baseline attacker. The benefit of
using subwarps is that the attacker may not be able to correctly
estimate the number of coalesced accesses. Further, with a large
number of subwarps, the variance in the number of coalesced
accesses decreases, entailing more number of plaintext samples
to establish a weak correlation. This weak correlation reduces
the information leakage over the timing channels. We call this
defense mechanism as Fixed Subwarp Size (FSS), as the size
of subwarp chosen by the defense mechanism is fixed.
• Size of Subwarps: In case the attacker knows the number

of subwarps (or calculates it based on the timing information),
we aim to increase the strength of the defense mechanism
by randomizing the number of threads per subwarp such
that the total number of threads per warp still remains 32.
This randomness makes the number of coalesced accesses
harder to estimate (same reasoning as FSS) even if the number
of subwarps is known to the attacker. We call this defense
mechanism as Random Subwarp Size (RSS) as the size of each
subwarp is chosen randomly.
• Thread Elements of Subwarps: Our last mechanism is

focused on further enhancing the GPU security by randomiz-
ing the thread elements of each subwarp (Random-threaded
Subwarp (RTS)). It introduces additional randomness in the
number of coalesced accesses generated. Note that RTS can
be combined with both FSS and RSS defense mechanisms.

IV. SUBWARP BASED DEFENSE MECHANISMS

In this section, we discuss a series of subwarp-based defense
mechanisms that are designed to weaken the deterministic
memory coalescing logic in GPUs. By doing so, the baseline
attack that leverages the knowledge of memory coalescing logic
will find it difficult to correctly guess the last round key bytes,
thereby improving the security of the GPU-based systems.

A. Fixed-sized Subwarps (FSS)
In the baseline attack, the attacker assumes that the number

of subwarps (num-subwarp) is 1, and hence, all threads
are processed together for coalescing. In our first defense
mechanism, fixed size subwarps (FSS), we break this assump-
tion by choosing a value of num-subwarp that is unknown
to the attacker. In order to understand the impact of num-
subwarp on performance, consider Figure 7a. We find that
the total execution time increases with increase in the value
of num-subwarp. It is because a large num-subwarp leaves
few threads for being coalesced together thereby reducing
coalescing possibilities across the threads within a warp. This
leads to increased number of coalesced accesses resulting in
the performance loss.
Advantages of FSS. Although FSS has disadvantage in terms
of performance, we find that such a mechanism can improve
the GPU security against the baseline attack. It is because
a value of num-subwarp other than 1 will generate different
number of coalesced accesses than the baseline attack, which

5 10 15 20 25 30
Number of Subwarps

1.0

1.1

1.2

1.3

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

1.0

1.5

2.0

2.5

No
rm

al
ize

d
To

ta
l M

em
or

y
Ac

ce
ss

es

Execution Time
Total Memory Accesses

(a) Execution Time

1 2 4 8 16 32
Number of Subwarps

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Co
rre

la
tio

n

(b) Average correlation

Fig. 7: Performance of FSS enabled AES with respect to number
of subwarps: a) Execution Time and Total Memory Accesses per
plaintext with increasing number of subwarps, b) Average of
correlations between the last round execution time and the last
round memory accesses for all key bytes. The last round memory
accesses are calculated assuming correct values of a key byte and
the number of subwarps for coalescing to be one.

assumes num-subwarp to be 1. Therefore, the attacker will
find it hard to guess the correct key byte as the correlation
between the estimated number of coalesced accesses and the
execution time reduces. To understand this further, we evaluate
FSS-enabled GPU under the baseline attack. Figure 7b shows
the average correlations for the correct guesses of all 16 key
bytes of the last round key. As expected, we observe that the
correlation between the last round execution time and coalesced
accesses calculated from the attack reduces with the increase
in the value of num-subwarp. Therefore, a high number of
samples would be required to correctly guess the last round
keys depending on the num-subwarp value.
Limitations of FSS. We evaluate the security of FSS mech-
anism when the attacker knows or correctly calculates the
value of num-subwarp. For example, the calculation can be
done based on the significant execution time differences across
num-subwarp values (Figure 7). By repeatably measuring the
execution time for encryption for a plaintext, an attacker can
determine which num-subwarp is used by the remote GPU
server. We call this new attack as “FSS Attack”, where the
attacker first calculates the number of last round coalesced
accesses generated per subwarp. Next, since the last round
execution time correlates with the last round coalesced accesses
across a complete warp, the attacker sums up the last round
coalesced accesses across all subwarps in a warp. Algorithm 1
illustrates the steps to calculate the number of last round
coalesced accesses per warp.

We evaluate the effectiveness of FSS-enabled GPU under
the FSS-attack in Figure 8, which illustrates that the attacker
is able to establish a high correlation between the number of
coalesced accesses and the last round execution time using the
FSS attack. Using Algorithm 1, the attacker can calculate the
last round memory accesses across the whole warp as observed
during the encryption. Therefore, the attacker can establish a
high correlation between the calculated number of last round
coalesced accesses and the observed last round execution time
to successfully recover the last round key. For num-subwarp
= 32 (not shown), the variation in the numbers of last round
coalesced accesses generated across all plaintexts drops to 0.
Subsequently, the correlation between the number of last round

5

Algorithm 1 Algorithm for FSS attack to calculate the number
of last round coalesced accesses for a given key byte guess
while considering num-subwarp.
kj ← guess value
last round mem accesses← 0
for i = 0→ num-subwarp do
mem accesses subwarp[i]← 0

for grp = 0→ num-subwarp do
for i = 0→ 32

num-subwarp do
holder[i]← 0

% comment: line represents plaintext line
% comment: LEN represents the total number of lines in the plaintext

for line = grp∗LEN
num-subwarp →

(grp+1)∗LEN
num-subwarp do

holder[T4−1[cipher[line][j]⊕ kj] >> 4] + +

for i = 0→ 32
num-subwarp do

if holder[i]! = 0 then
mem accesses subwarp[grp] + +

for i = 1→ num-subwarp do
if mem accesses subwarp[i]! = 0 then
last round mem accesses ← last round mem accesses +

mem accesses subwarp[i]

0 50 100 150 200 250 300
Possible values for key byte 0

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
rre

la
tio

n

(a) num-subwarp = 2

0 50 100 150 200 250 300
Possible values for key byte 0

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
rre

la
tio

n

(b) num-subwarp = 4

0 50 100 150 200 250 300
Possible values for key byte 0

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
rre

la
tio

n

(c) num-subwarp = 8

0 50 100 150 200 250 300
Possible values for key byte 0

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
rre

la
tio

n

(d) num-subwarp = 16

Fig. 8: Fixed Size Subwarp (FSS) mechanism against FSS attack.

coalesced accesses from Algorithm 1 and the observed last
round execution time also drops to 0. Therefore, FSS enabled
GPU is immune to the correlation timing attacks only when
num-subwarp = 32 but at the cost of performance. In summary,
we conclude that the stand alone FSS-enabled GPU cannot
provide adequate security against the generalized correlation
timing attacks. Therefore, improved defense mechanisms are
required.

B. Random-sized Subwarp (RSS)

In Random-sized Subwarp (RSS) defense mechanism, the
size of each subwarp is randomly chosen by the hardware. It
implies that the coalescing unit considers different numbers
of threads per subwarp for coalescing together. This results in
increased randomness in the number of last round coalesced
accesses generated per warp leading to reduction in correlation.
We consider two distributions to generate sizes of subwarps:
normal and skewed. Figure 9 shows these distributions for
1000 plaintexts and with the assumption of num-subwarp = 4.
In the normal distribution case, the mean of the distribution is
close to that of the FSS scenario (32/num-subwarp). According
to empirical results (not shown), this implies that security and

performance of RSS with normal distribution is similar to that
of FSS.

0 10 20
Subwarp Sizes

0%

10%

20%

30%

Fr
eq

ue
nc

y

(a) Normal Distribution.

0 10 20
Subwarp Sizes

0%

20%

40%

Fr
eq

ue
nc

y

(b) Skewed Distribution.

Fig. 9: Subwarp size distribution of RSS for num-subwarp = 4.

In order to improve security and performance over FSS,
we consider skewed size distribution for the RSS mechanism
that leads to significant differences in the subwarp sizes. This
has two benefits. First, due to the mismatch in the subwarp
sizes, the attacker will find it hard to correctly calculate the
last round coalesced accesses using Algorithm 1. Second, the
skewed distribution also results in an improved performance,
since the opportunities for coalescing increases with the
subwarp size. Further, we ensure that the skewed distribution
considers all possible subwarp size combinations equally likely
and no subwarp is empty (a formalization can be found in
Section V-B3). In summary, we use skewed distribution for
RSS to improve security and performance.

C. Random-threaded Subwarp (RTS)

In addition to the size and number of subwarps, we consider
an additional level of randomness that comes from the choice
of threads that form a particular subwarp. By random allocation
of the threads to different subwarps, we eliminate the in-
order mapping of threads to the subwarp. We find that such
random formation of subwarps significantly changes the number
of expected coalesced accesses as the threads processed for
coalescing in a subwarp are chosen randomly. We define this
technique as Random-threaded Subwarp (RTS).

(a)

sid = 0

0x00
tid = 0

sid = 1

0x01
tid = 1

sid = 0

0x06
tid = 2

sid = 1

0x07
tid = 3

(b)

sid = 1

0x00
tid = 0

sid = 1

0x01
tid = 1

sid = 0

0x06
tid = 2

sid = 1

0x07
tid = 3

Coalescing Unit Coalescing Unit

0x00 0x01 0x02 0x03

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0x07

0x04 0x05 0x06 0x07
Four Coalesced Accesses

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0x07

0x04 0x05 0x06 0x07
Three Coalesced AccessesFr

om
 S

ub
w

ar
p

0

Fr
om

 S
ub

w
ar

p

1

Fr
om

 S
ub

w
ar

p

1
From

Subwarp # 0

Fig. 10: Effects of different defense mechanisms on coalescing for
num-subwarp = 2: a) FSS+RTS and b) RSS+RTS. sid represents
subwarp id and tid represents thread id.

RTS can be applied on top of both FSS and RSS, called as
FSS+RTS and RSS+RTS, respectively. Extending the example
used in Section II-A to study the impact of subwarps on coa-
lescing, Figures 10a and 10b illustrate examples of FSS+RTS

6

and RSS+RTS with 4 threads and 2 subwarps, respectively.
In the case of FSS+RTS, the size of both subwarps is 2 but
threads are not mapped in order. For example, subwarp 0 (sid
= 0) has two threads 0 and 2 (tid = 0 and 2) instead of threads
0 and 1. Therefore, four coalesced accesses are generated. In
the case of RSS+RTS, sizes of the subwarp are different: 1
and 3. Consequently, the mapping of one of threads is changed
(i.e., tid = 0 is now mapped to sid = 1) leading to total three
coalesced accesses. In summary, we find that RSS can help
in reducing the number of coalesced accesses while providing
randomness (along with RTS) for better security.

D. Implementation Details

In order to implement the proposed subwarp based defense
mechanisms, we modify the coalescing unit to allow flexibil-
ity in processing of threads for memory access coalescing.
Figure 11 shows a schematic of the memory coalescing unit
(MCU) of GPU (the additional hardware logic for security is
shaded). As described by Leng et al. [16], each MCU contains
a multi-entry pending request table (PRT). Each entry in the
PRT table stores the thread index (tid), the base and offset
addresses of the memory requests from the threads, and their
sizes. An entry is logged when a memory request is issued from
a thread. We add an additional subwarp-id (sid) field to identify
which threads should be coalesced together. The subwarp-id
and thread-id mapping is set by the hardware logic at the
beginning of the application execution and does not change
during the execution. The logic is dependent on the adopted
defense mechanism. In case of FSS and RSS, the bits are set
based on the chosen value of num-subwarp and the sizing
mechanism. The subwarp-ids are allotted in order, that is, first
group of threads will belong to the first subwarp with sid set to
0 and so on. For RTS, the available sids are allotted randomly
to the threads in a warp. The additional hardware overhead of
our mechanisms is related to the addition of subwarp-id field to
each PRT entry. The number of concurrent warp scheduler per
SM in our case is two. Therefore, for each SM, the nominal
overhead would be 32 × 2 × 5 bits (to represent 32 maximum
possible values of sid) = 320 bits.

.

.

.

M
em

or
y

Re
qu

es
ts

 fr
om

Th
re

ad
s

TI
D

SU
B_

ID

Re
qu

es
t S

ize

Ba
se

 A
dd

re
ss

O
ffs

et
 A

dd
re

ss

tid sid Entry
tid sid Entry

tid sid Entry

Pe
nd

in
g

Re
qu

es
t T

ab
le

M
em

or
y

Ac
ce

ss
 C

oa
le

sc
in

g

.

.

.

.

.

.

.

.

.

Coalescing Unit

G
lo

ba
l M

em
or

y

Fig. 11: Modified Coalescing Unit to realize FSS, RSS, and RTS
defense mechanisms. The additional hardware required is the
field to store subwarp-id (sid) for each thread.

E. Corresponding Attacks
Similar to the FSS attack, which generalized our baseline

attack, we assumed that the attacker is aware of the details
of our defense mechanisms implemented on GPU. Therefore,
for each defense mechanism, we modified Algorithm 1 to
mimic the respective defense mechanism on the attacker’s
side. For example, against the RSS+RTS enabled GPU, the
corresponding attack algorithm simulates RSS-like subwarp
size distribution along with random allocation of threads to
subwarps within a warp as in RTS. We assume corresponding
attacks in the rest of the paper.

V. THEORETICAL SECURITY ANALYSIS

A. Analytical Model
To measure the security strength of the defense mechanisms

introduced in Section IV, we inspect a natural metric of the
(expected) number of samples needed to successfully launch
the correlation timing attack.

To estimate that, we use T to represent the measurement
vector, a vector of the encryption times for a sample set using
the actual key. For the jth last round key byte kj , we use
Ûkmj to represent the estimation vector of kmj , a vector of the
coalesced accesses for the same sample set if 0 ≤ m ≤ 255
were the actual value of kj . The correlation attack essentially
tries to find the value m̂ that maximizes the correlation with
the measure vector:

m̂ = argmax
m

(ρ(T, Ûkmj))

We follow the derivation in [20], [31] to estimate the number
of needed samples, S, for a successful attack as follows:

S = 3 + 8×
(Zα

ln
(1+ρ(T,Û)

1−ρ(T,Û)

))2

≈ 2× Z2
α

ρ2(T, Û)
(4)

where Û is a short hand for Ûkm̂j , ρ represents the correlation
and Zα is the quantile of the standard normal distribution for
α, the desired success rate of an attack. With α = 0.99, 2×Z2

α

is approximately 11. Zα is proportional to α. So the smaller
α is, the smaller S is (i.e., fewer samples are needed).

To estimate ρ2(T, Û), we observe that (as shown in Figure 5)
the total execution time of AES is proportional to the number
of last-round coalesced accesses. Hence, we can draw on the
latter in the analytical model2. Hence, let us assume that U
is the actual vector of number of coalesced accesses from the
lookup of table T4 with respect to the key byte kj (Equation 1
in Section II-B). We can rewrite Equation 4 as

S ∝ 1

ρ2(U, Û)
=
(µ(U × Û)− µ(U)µ(Û)

σ(U)σ(Û)

)−2

=
(µ(U × Û)− µ2(U)

σ2(U)

)−2

(5)

where µ and σ, as standard, respectively represent the mean
and standard deviation of a random variable. The last equation
is true since U and Û are identically distributed.

2We note that using the number of coalesced accesses rather than the
execution time assure a lower bound on the number of samples since the later
is noisier than the former.

7

B. Analysis of Defense Mechanisms
To make the analysis general, we assume there are in total

M subwarps and N threads. Moreover, we assume that each
lookup table may map to R memory blocks. As discussed in
Section II, our configuration has N = 32 and R = 16.

We first define three useful definitions.
Definition 1: Given m threads, if each thread accesses one

of n memory blocks in a uniform way, then the number of
coalesced accesses, Nm,n, obeys the following distribution:

P (Nm,n = i) =
1

nN
n!

(n− i)!

{
m

i

}
where

{
m
i

}
denotes the Stirling number of the second kind.

Here,
{
m
i

}
represents the ways of partitioning m threads into i

non-empty subsets; n!
(n−i)! , i-permutations of n, represents the

ways of forming i non-empty subsets from n memory blocks.
It is infeasible to compute Equation (5) by enumerating all

possible mappings from threads to memory blocks since there
are in total RN possibilities (1632 = 2128 when N = 32 and
R = 16). However, we note that with RTS, the number of
coalesced accesses only depends on the frequency of the R
memory blocks, which is defined as follows.

Definition 2: For R memory blocks and n threads, we define
a frequency set F as

{(f1, . . . , fR) | f1 + · · ·+ fR = n}

where fi ∈ F represents the frequency of accessing the i-th
memory block among the n threads.

Given a frequency vector F ∈ F , we note that the
“contribution” of each memory block to the number of last-
round coalesced accesses U is independent. Hence,

Definition 3: Given a frequency sequence F ∈ F and a
vector C = {c1, · · · , cm} that specifies the capacity of each
subwarp, if each thread uniformly accesses one of the |F |
memory blocks, then the number of coalesced accesses, written
as MF,C , satisfies

µ(MF,C) =
∑
fi∈F

∑
cj∈C

(1− CS−cjfi
/CSfi)

where Cmn denotes the binomial coefficient and S =∑
1≤j≤n cj .

Here, CS−cjfi
/CSfi is the probability that the j-th subwarp is

empty and µ(MF,R) is the sum of the expectations for each
subwarp and each memory block.

Next, we derive the (normalized) samples needed for a
successful attack for each defense mechanism. We skip the
theoretical analysis for the RSS mechanism since it requires
enumerating all possible mappings from threads to memory
blocks rather than the frequency set, making it infeasible for
the calculation. Instead, we provide the empirical results for
the RSS mechanism in Section VI.

1) FSS: With sufficiently random plaintexts, the probability
that one thread accesses one of the R memory blocks is
1/R. Hence, for each subwarp with size N/M , the number
of coalesced accesses is NN/M,R. Since each subwarp is
independent, we have

µ(U) =M × µ(NN/M,R) σ(U) =M × σ(NN/M,R)

TABLE II: Security analysis results with N = 32 and R = 16,
where N is the number of threads and R is the number of
memory blocks. Here, M is the number of subwarps and S is
the number of samples normalized to FSS with M = 1 case.

ρ S (normalized)
M FSS FSS+RTS RSS+RTS FSS FSS+RTS RSS+RTS
1 1.00 1.00 1.00 1 1 1
2 1.00 0.41 0.20 1 6 25
4 1.00 0.20 0.15 1 24 42
8 1.00 0.09 0.11 1 115 78
16 1.00 0.03 0.05 1 961 349
32 0.00 0.00 0.00 ∞ ∞ ∞

For µU×Û , we note that given any sequence of memory
blocks being accessed by threads, U is identical to Û . Hence,
µ(U × Û) = µ(U2) = σ2(U) + µ2(U).

2) FSS+RTS: The random permutation does not affect µ(U)
and σ(U). For µ(U × Û), (U |F) and (Û |F) are independent
and identical for any F ∈ F . Hence, the term is equivalent to∑

F∈F
P (F)µ2(U |F) (6)

Here, P (F) is the probability of seeing the frequency vector
F . Among all RN combinations of N memory accesses,
Cf1N C

f2
N−f1 · · ·C

fR
N−

∑
1≤j≤R−1 fj

= (N)!
Πfi∈Ffi!

match F . Hence,

we have P (F) = (N)!
Πfi∈Ffi!

× 1
RN . Moreover, µ(U |F) is the

same as µ(MF,{N/M,··· ,N/M}) since each subwarp has size
N/M .

3) RSS+RTS: We use Ui to represent the coalesced accesses
of the i-th subwarp. With RSS, Ui and Uj are not independent.
Hence, we cannot compute σ(U) as for FSS.

However, given the size of each subwarp, Ui and Uj
are independent for any 1 ≤ i, j ≤ M . We use W =
{(w1, · · · , wM) |

∑
1≤i≤M wi = N ∧ ∀1≤i≤M . wi 6= 0} to

denote all possible non-empty sizes of subwarps under RSS.
Due to uniformity, P (W) = 1

|W| for any W ∈ W .
For µ(U), we have µ(U) =

∑
W∈W P (W)µ(U |W) =∑

W∈W P (W)
∑
wi∈W µ(Ui|wi) where µ(Ui|wi) is the same

as µ(Nwi,R). For σ(U), we know σ2(U) = µ(U2) − µ2(U)
and

µ(U2) =
∑
W∈W

P (W)µ(U2|W)

=
∑
W∈W

P (W)
(∑

1≤i≤M

σ2(Ui|wi) + µ2(U |W)
)

Here, σ2(Ui|wi) = µ(U2
i |wi) − µ2(Ui|wi) and µ(U |W) =∑

1≤i≤M µ(Ui|wi) due to independence. We note that (Ui|wi)
is Nwi,R and (U2

i |wi) is (Nwi,R)
2. So these terms can be

computed via Definition 1.
For µ(U × Û), we can reuse Equation 6 since with RTS,

(U |F) and (Û |F) are independent and identical. Similar to
FSS+RTS, µ(U |F) =

∑
W∈W P (W)µ(MF,W) in this case.

C. Results

We use a Python script to compute the correlation and
normalized sample size for a successful attack. The results are
summarized in Table II.

As expected, when M = 32, we have ρ = 0 and S = ∞
because in this case, each thread is mapped to one subwarp

8

and hence, U = 32 regardless of the last-round key. Otherwise,
FSS is the least secure (ρ = 1, S = 1), where the key can be
revealed easily (as shown in Figure 8). For both FSS+RTS
and RSS+RTS, increasing the number of subwarps reduces
ρ and increases S. We note that FSS+RTS is more secure
than RSS+RTS for M = 8 and 16 though the latter adds
randomness to the subwarp size. We hypothesize the reason for
this improved security is that one of the subwarps has large size
under RSS+RTS most of the times (see, Figure 9). In this case,
the correlation between measurement vector and estimation
vector is higher than that under FSS+RTS. Moreover, the
empirical results are consistent with the evaluation (Section VI).

Since, in practice, the attacker may observe only the noisy
total execution time rather than the last-round coalesced
accesses as assumed for the theoretical analysis, the absolute
value of needed samples for a successful attack is very large.
We note that the FSS mechanism with M = 1 is the same as
the (baseline) architecture used in [10]. As reported in [10], one
million timing samples are needed (if the timing data measured
is clean) in this case, and the samples can be collected within
30 minutes. Hence, we estimate that under FSS+RTS with
M = 16, around one billion samples (refer Table II) are
needed for a successful attack. Although such an attack is
theoretically possible, it is not practical since collecting timing
samples alone may take (30 minutes ∗ 961 ≈) 20 days.

VI. EXPERIMENTAL ANALYSIS OF
SECURITY AND PERFORMANCE

In this section, we present empirical results to support the
theoretical results discussed in Section V. We first analyze
the security of each mechanism by assessing the key recovery
ability using the scatter plots and by inspecting the reduction in
the correlation values. Subsequently, we discuss the effects of
the proposed mechanisms on performance and data movement.
All the results are collected on a GPU architectural simulator,
GPGPU-Sim [1]. Note that it is impractical to execute the
attack experiments with a large number of plaintexts on a
simulator. However, because of the less noisy environment
in the simulators compared to the real hardware, we were
able to demonstrate the baseline attack with 100 plaintext
samples (each with 32 lines) in Section III. Therefore, for
a fair comparison, we use the same number of samples to
demonstrate the effectiveness of our defense mechanisms.

A. Effect on Security
FSS+RTS Attack on FSS+RTS enabled GPU. Figure 12
shows four scatter plots each with a different value of num-
subwarp. Each scatter plot shows the correlation values
between the last round execution time and the number of
last round coalesced accesses calculated from the FSS+RTS
attack algorithm for all the guessed values of the key byte 0.
We notice that as num-subwarp increases the last round key
byte recovery gets difficult as opposed to the standalone FSS
defense mechanism. This enhancement in the security is due
to the random noise added by the RTS mechanism. Although
the FSS+RTS attack implements the random thread allocation
in the attack algorithm, it is hard to correctly match the thread
allocation order to the one used during the encryption. We

conclude that the randomization in the thread allocations allows
FSS+RTS to improve GPU security.

0 50 100 150 200 250 300
Possible values for key byte 0

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
rre

la
tio

n

(a) num-subwarp = 2

0 50 100 150 200 250 300
Possible values for key byte 0

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
rre

la
tio

n

(b) num-subwarp = 4

0 50 100 150 200 250 300
Possible values for key byte 0

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
rre

la
tio

n

(c) num-subwarp = 8

0 50 100 150 200 250 300
Possible values for key byte 0

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
rre

la
tio

n

(d) num-subwarp = 16

Fig. 12: FSS+RTS defense mechanism against FSS+RTS attack.

RSS Attack on RSS enabled GPU. Figure 13 shows four
scatter plots each with a different value of num-subwarp. Each
scatter plot shows the correlation values between the last round
execution time and the number of last round coalesced accesses
calculated from the RSS attack algorithm for all the guessed
values of the key byte 0. For num-subwarp greater than 2, we
observe that the key byte recovery is difficult as the correlation
value for the correct guess is no longer the highest. The drop
in the correlation value against the RSS attack is due to the
random nature of the subwarp sizing employed in RSS defense
mechanism. This random subwarp sizing is changed between
the plaintexts and is hard to mimic during the correlation timing
attack. Therefore, with the random sizing of the subwarps, the
RSS defense mechanism offers improved security as compared
to the FSS defense mechanism.

0 50 100 150 200 250 300
Possible values for key byte 0

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
rre

la
tio

n

(a) num-subwarp = 2

0 50 100 150 200 250 300
Possible values for key byte 0

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
rre

la
tio

n

(b) num-subwarp = 4

0 50 100 150 200 250 300
Possible values for key byte 0

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
rre

la
tio

n

(c) num-subwarp = 8

0 50 100 150 200 250 300
Possible values for key byte 0

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
rre

la
tio

n

(d) num-subwarp = 16

Fig. 13: RSS defense mechanism against RSS attack.

RSS+RTS Attack on RSS+RTS enabled GPU. Figure 14
shows four scatter plots each with a different value of num-
subwarp. Each scatter plot shows the correlation values
between the last round execution time and the number of last
round coalesced accesses calculated from the RSS+RTS attack
algorithm for all the guessed values of the key byte 0. Similar

9

to FSS+RTS and RSS defense mechanisms, we notice that the
recovery of the correct value of the key byte is difficult with
the RSS+RTS defense mechanism for num-subwarp greater
than 2. The RSS+RTS leverages the randomness in the subwarp
sizing and in the thread allocation to the subwarps, which is
very difficult to replicate in the RSS+RTS attack. We conclude
that RSS+RTS offers security benefits over the FSS defense
mechanism.

0 50 100 150 200 250 300
Possible values for key byte 0

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
rre

la
tio

n

(a) num-subwarp = 2

0 50 100 150 200 250 300
Possible values for key byte 0

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
rre

la
tio

n

(b) num-subwarp = 4

0 50 100 150 200 250 300
Possible values for key byte 0

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
rre

la
tio

n

(c) num-subwarp = 8

0 50 100 150 200 250 300
Possible values for key byte 0

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
rre

la
tio

n

(d) num-subwarp = 16

Fig. 14: RSS+RTS defense mechanism against RSS+RTS attack.

Security Comparisons. Figure 15 compares the security of-
fered by the different defense mechanisms proposed in this work
using the average correlation. As noted in Section IV, the FSS
defense mechanism fails to reduce the correlation as the FSS
attack can correctly calculate the last round coalesced accesses.
For FSS+RTS, RSS and RSS+RTS defense mechanisms, we
observe a decrease in correlation for num-subwarp = 2 and
4. We observe slight fluctuations in the respective correlations
for RSS and RSS+RTS defense mechanisms for num-subwarp
= 8 and 16 due to increased randomness in the coalescing.
This randomness affects the incorrect guesses of the key bytes
as well and results in an overall improved security. Also, we
notice that RSS+RTS outperforms all other defense mechanisms
for num-subwarp = 2 and 4, while FSS+RTS outperforms
rest of the defense mechanisms for num-subwarp = 8 and
16. For num-subwarp = 2 and 4, the RSS+RTS introduces
randomness in the coalescing at subwarp sizing as well as at
thread to subwarp allocation level. Therefore, the correlation
values decreases more in RSS+RTS than in FSS+RTS. However,
for num-subwarp = 8 and 16, the variance in the last round
coalesced accesses is lower in the case of FSS+RTS compared
to RSS+RTS. It is because FSS+RTS has more subwarps
with the same size compared to RSS+RTS. These findings
are corroborated by the theoretical analysis (Table II).

B. Effect on Performance and Data Movement

Figure 16 shows the execution time and the total number
of memory accesses with respect to num-subwarp for each
defense mechanism. In Figure 16a, we notice an increase in
the total memory accesses with respect to num-subwarp. This
increase in the memory accesses is attributed to the subwarp
based defense mechanisms – FSS and RSS – which reduce

1 2 4 8 16 32
Number of subwarps

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Co
rre

la
tio

n

FSS FSS+RTS RSS RSS+RTS

Fig. 15: Comparison between the security offered by FSS,
FSS+RTS, RSS and RSS+RTS based on the average of corre-
lations between the last round coalesced accesses for all key
bytes and the last round execution time observed during the
encryption. The last round coalesced accesses are calculated using
the corresponding attacks.

the possibility of memory accesses coalescing by dividing
the threads of a warp into different subwarps. Therefore, we
observe an increase in the execution time as the num-subwarp
increases (Figure 16b). We make two more observations. First,
the RTS mechanism does not affect the performance. Although
the order of the thread allocation to the subwarps dictates the
number of coalesced accesses in a subwarp and hence across
the entire warp, the overall effect on performance averages
itself out over a large number of plaintexts.

1 2 4 8 16 32
Number of subwarps

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
Nu

m
be

r o
f

To
ta

l M
em

or
y

Ac
ce

ss
es

(a) Number of Memory Accesses

1 2 4 8 16 32
Number of subwarps

0.00

0.25

0.50

0.75

1.00

1.25

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

(b) Execution Time

FSS FSS+RTS RSS RSS+RTS

Fig. 16: Performance and Data Movement Comparisons between
FSS, FSS+RTS, RSS, and RSS+RTS.

Second, the RSS-based mechanisms (RSS and RSS+RTS)
show a slightly lower increase in the memory accesses
compared to the FSS-based mechanisms (FSS and FSS+RTS).
This is because the skewed distribution of subwarp sizes in the
RSS-based mechanisms (Section IV-B) increases the possibility
of a few subwarps to be larger than others. Therefore, on
average, the RSS and RSS+RTS defense mechanisms perform
better than the FSS and FSS+RTS defense mechanisms.

C. Evaluating the Trade-off Between Security and Performance
We define the RCoal Score metric, as per Equation 7, to

allow hardware engineers to achieve a trade-off between the
security and performance as per design requirements.

RCoal Score =
Sa

execution timeb
(7)

In the above equation, S is the square of the inverse of
the average correlation values calculated from the attack as
shown in Figure 15. The parameters (a and b) can be set by
the hardware engineer to put an appropriate emphasis on either
security or performance. For example, Figure 17a shows the
RCoal Score values for a security-oriented system with a = 1

10

and b = 1. We note that FSS+RTS with num-subwarp = 8
and 16 is best suited for improving GPU security, albeit with
a considerable loss in the performance. For a performance-
oriented system, we set a = 1 and b = 20, as shown in
Figure 17b. In this case, for num-subwarp = 8 and 16, RSS+RTS
scores higher than FSS+RTS since it offers an improvement
in the performance at a moderate loss in security.

2 4 8 16
Number of subwarps

0

200

400

RC
oa

l_S
co

re

(a)

2 4 8 16
Number of subwarps

0

5

10

15

RC
oa

l_S
co

re

(b)

FSS FSS+RTS RSS RSS+RTS

Fig. 17: Comparison between the FSS, FSS+RTS, RSS and
RSS+RTS defense mechanisms based on the RCoal score against
the corresponding attacks: a) Security-oriented system with a =
1 and b = 1, b) Performance-oriented system with a = 1 and
b = 20.

D. Case Study: Plaintext with 1024 Lines
We evaluate the scalability of the subwarp based defense

mechanisms by increasing the plaintext size to 1024 lines. To
negate the ill-effects of the warp scheduling noise during the
security evaluation of the defense mechanisms, we correlate the
last round coalesced accesses calculated from the corresponding
attacks with the last round coalesced accesses observed during
the encryption. It is evident that if the attacker is able to
correctly estimate the last round coalesced accesses during the
attack, then the correlation will be highest for the correct guess
of the key byte leading to a successful recovery of the key. We
discuss the security and the performance of each mechanism
with respect to num-subwarp.
Security. Figure 18a shows the average correlation for all key
bytes of the last round key for each defense mechanism. As
expected, we notice that the average correlation decreases for
FSS+RTS, RSS and RSS+RTS mechanisms for num-subwarp
greater than 1. We conclude that our defense mechanisms
improve security on GPUs encrypting large plaintexts as well.

1 2 4 8 16 32
Number of subwarps

0.0

0.5

1.0

Av
er

ag
e

Co
rre

la
tio

n

(a) Security

1 2 4 8 16 32
Number of subwarps

0

1

2

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

(b) Performance

FSS FSS+RTS RSS RSS+RTS

Fig. 18: Effects of the defense mechanisms on security against
the corresponding attacks and performance with respect to the
number of subwarps for plaintext with 1024 lines: a) Average
of correlations between the last round coalesced accesses from
the attack and the execution for all key bytes, b) Execution time
(normalized to the case when num-subwarp=1) with respect to
the number of subwarps.

Performance. Figure 18b shows the execution time for each
mechanism normalized to the baseline case of num-subwarp set
to 1. As in the case of plaintext with 32 lines, we note that the

RTS mechanism does not affect the execution time. Also, the
the execution time increases with num-subwarp. Additionally,
as earlier, RSS-based mechanisms increase the coalescing
possibilities and deliver better performance than the FSS-
based mechanisms. In conclusion, we observe that RSS+RTS
mechanism offers an improved security with performance
degradation in the range of 29 to 76% for num-subwarp = 2,
4, and 8. This indicates that the defense mechanisms presented
in this work scale well with the plaintext size.

VII. DISCUSSION AND FUTURE WORK

In the context of RCoal, we discuss the following two future
research directions.
• The current implementation of RCoal spans over the entire

execution of the AES and assumes that all rounds are equally
vulnerable [25]. The advantage of such an implementation
is that it does not require software support to identify the
vulnerable portions (rounds) of the code. To enhance the per-
formance further, RCoal can be limited only to the vulnerable
part of the code. However, that would require software support
to correctly identify the vulnerable portions of the code and
hardware support to frequently turn coalescing on and off based
on which warps are executing the vulnerable code at a given
time. We leave the development of such hardware/software
support as a part of the future work.
• We presented a series of defense mechanisms that focused

only on the intra-warp coalescing techniques. Therefore, we
disabled other bandwidth conserving optimizations in GPUs
(e.g., MSHRs and caches). However, we believe our proposed
intra-warp coalescing will be more effective if randomization
is employed at all levels of the memory hierarchy. We leave
the development of these randomization techniques as a part
of the future work.

VIII. RELATED WORK

To the best of our knowledge, this is the first work that
proposes randomized coalescing mechanisms to thwart timing
attacks in GPUs. In this section, we list works relevant to ours.
Timing attacks. Cryptographic algorithms implemented on
CPUs have been the major targets of timing attacks. Those
attacks exploit the fact that key-dependent memory accesses,
such as table-lookups in AES, affect the memory access patterns
and hence, the status of data cache. Hence, an attacker may
infer private keys by observing the execution time of either a
cryptographic algorithm (e.g., [2], [3], [5], [26]), or his own
application if the data cache is shared (e.g., [5], [8], [35], [37]).

Pietro et al. [27] identified that the memory leaks are possible
at various levels of GPU memory hierarchy, especially at
software-managed scratchpad memory and register file. A
recent work [11] exploits a new fine-grained timing channel
caused by bank conflicts in a GPU’s shared memory. A com-
plete AES key recovery timing attack was first demonstrated
on a commercial GPU architecture by Jiang et al. [10]. We
have already extensively discussed this attack and proposed
defense mechanisms that trade-off performance for security.
Timing channel mitigation. Several hardware-based timing
attacks have been proposed in the context of CPUs [18], [19],
[26], [32], [33], [34], [36]. Among those works, more related

11

are mechanisms based on randomization [19], [32], [33], [34].
Most of these works randomize the memory-to-cache mapping
or the cache replacement policy, while our work proposes to
randomize the coalescing behavior.
Coalescing and Bandwidth Saving Techniques in GPUs.
Kloosterman et al. [15] proposed warp-pool, an enhanced inter-
warp sharing mechanism to reduce global memory accesses.
Rhu et al. [28] proposed cache sectoring mechanism to reduce
unnecessary data fetches from global memory. A series of warp
scheduling techniques [12], [13], [29], [30] have been proposed
to reduce cache misses and improve memory bandwidth
utilization. None of these works focused on hardware security
issues, as we do in this paper.

IX. CONCLUSIONS

Our findings confirm that the deterministic nature of the
coalescing logic is a major cause of security vulnerability in
GPUs. To address this vulnerability, we propose a series of
defense mechanisms that allow the coalescing logic to randomly
change the number of coalesced accesses. Specifically, we
propose to randomize: a) the granularity at which intra-warp
coalescing is performed in the baseline architecture, and b)
allocation of the thread elements per subwarp. Our theoretical
and empirical results show that our randomized coalescing
defense mechanisms significantly improve the GPU security at
a modest performance loss.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
and the members of Insight Computer Architecture Lab at
the College of William and Mary for their feedback. This
material is based upon work supported by the National Science
Foundation (NSF) grants (#1657336 and #1717532) and a start-
up grant from the College of William and Mary. This work
was performed in part using computing facilities at the College
of William and Mary which were provided by contributions
from the NSF, the Commonwealth of Virginia Equipment Trust
Fund and the Office of Naval Research.

REFERENCES

[1] A. Bakhoda et al., “Analyzing cuda workloads using a detailed gpu
simulator,” in 2009 IEEE International Symposium on Performance
Analysis of Systems and Software, April 2009, pp. 163–174.

[2] A. Bogdanov et al., “Differential cache-collision timing attacks on AES
with applications to embedded cpus,” in Topics in Cryptology–CT-RSA
2010, ser. Lecture Notes in Computer Science, J. Pieprzyk, Ed., 2010,
vol. 5985, pp. 235–251.

[3] J. Bonneau and I. Mironov, “Cache-collision timing attacks against AES,”
in Cryptographic Hardware and Embedded Systems - CHES 2006, ser.
Lecture Notes in Computer Science, L. Goubin and M. Matsui, Eds.
Springer Berlin Heidelberg, 2006, vol. 4249, pp. 201–215.

[4] GPGPU-Sim v3.2.1. Address mapping. Available: {http://gpgpu-sim.org/
manual/index.php5/GPGPU-Sim 3.x Manual#Memory Partition}

[5] D. Gullasch et al., “Cache games—bringing access-based cache attacks
on AES to practice,” in Proc. IEEE Symp. on Security and Privacy
(S&P), 2011, pp. 490–505.

[6] O. Harrison and J. Waldron, “AES Encryption Implementation and
Analysis on Commodity Graphics Processing Units,” in Proceedings
of the 9th International Workshop on Cryptographic Hardware and
Embedded Systems, ser. CHES ’07, 2007.

[7] Hynix. Hynix GDDR5 SGRAM Part H5GQ1H24AFR Revi-
sion 1.0. Available: {http://www.hynix.com/datasheet/pdf/graphics/
H5GQ1H24AFR(Rev1.0).pdf}

[8] G. Irazoqui et al., “Wait a minute! A fast, cross-VM attack on AES,”
in Research in Attacks, Intrusions and Defenses, ser. Lecture Notes in
Computer Science, A. Stavrou et al., Eds., 2014, vol. 8688, pp. 299–319.

[9] K. Iwai et al., “Aes encryption implementation on cuda gpu and its
analysis,” in 2010 First International Conference on Networking and
Computing, Nov 2010, pp. 209–214.

[10] Z. H. Jiang et al., “A complete key recovery timing attack on a GPU,”
in HPCA, 2016.

[11] Z. H. Jiang et al., “A Novel Side-Channel Timing Attack on GPUs,” in
Proceedings of the on Great Lakes Symposium on VLSI 2017. ACM,
2017, pp. 167–172.

[12] A. Jog et al., “OWL: Cooperative Thread Array Aware Scheduling
Techniques for Improving GPGPU Performance,” in ASPLOS, 2013.

[13] O. Kayiran et al., “Neither More Nor Less: Optimizing Thread-level
Parallelism for GPGPUs,” in PACT, 2013.

[14] D. Kirk and W. W. Hwu, Programming Massively Parallel Processors.
Morgan Kaufmann, 2010.

[15] J. Kloosterman et al., “Warppool: Sharing requests with inter-warp
coalescing for throughput processors,” in MICRO, 2015.

[16] J. Leng et al., “GPUWattch: Enabling Energy Optimizations in GPGPUs,”
in ISCA, 2013.

[17] Q. Li et al., “Implementation and analysis of AES encryption on GPU,”
in High Performance Computing and Communication & 2012 IEEE 9th
International Conference on Embedded Software and Systems (HPCC-
ICESS), 2012 IEEE 14th International Conference on. IEEE, 2012.

[18] X. Li et al., “Sapper: A language for hardware-level security policy
enforcement,” in ASPLOS, 2014.

[19] F. Liu and R. B. Lee, “Random fill cache architecture,” in MICRO, 2014.
[20] S. Mangard, “Hardware countermeasures against dpa–a statistical analysis

of their effectiveness,” in Cryptographers’ Track at the RSA Conference.
Springer, 2004, pp. 222–235.

[21] F. P. Miller et al., Advanced Encryption Standard. Alpha Press, 2009.
[22] M. Neve and J.-P. Seifert, “Advances on access-driven cache attacks on

aes,” in Selected Areas in Cryptography, vol. 4356. Springer, 2006, pp.
147–162.

[23] N. Nishikawa et al., “High-performance symmetric block ciphers on
cuda,” in 2011 Second International Conference on Networking and
Computing, Nov 2011, pp. 221–227.

[24] NVIDIA, “Programming Guide.” Available: http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#axzz3DAGrtrOq

[25] D. A. Osvik et al., “Cache attacks and countermeasures: The case of
aes,” in Proceedings of the 2006 The Cryptographers’ Track at the RSA
Conference on Topics in Cryptology, ser. CT-RSA’06, 2006.

[26] D. Page, “Partitioned cache architecture as a side-channel defense
mechanism,” in Cryptology ePrint Archive, Report 2005/280, 2005.
Available: http://eprint.iacr.org/2005/280.pdf

[27] R. D. Pietro et al., “Cuda leaks: A detailed hack for cuda and a (partial)
fix,” ACM Trans. Embed. Comput. Syst., 2016.

[28] M. Rhu et al., “A Locality-Aware Memory Hierarchy for Energy-Efficient
GPU Architectures,” in MICRO, 2013.

[29] T. G. Rogers et al., “Cache-Conscious Wavefront Scheduling,” in MICRO,
2012.

[30] T. G. Rogers et al., “Divergence-Aware Warp Scheduling,” in MICRO,
2013.

[31] K. Tiri et al., “An analytical model for time-driven cache attacks,” in
International Workshop on Fast Software Encryption. Springer, 2007,
pp. 399–413.

[32] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in ISCA, 2007.

[33] Z. Wang and R. B. Lee, “A novel cache architecture with enhanced
performance and security,” in MICRO, 2008.

[34] M. Yan et al., “Secure hierarchy-aware cache replacement policy (sharp):
Defending against cache-based side channel atacks,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture.
ACM, 2017, pp. 347–360.

[35] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
l3 cache side-channel attack,” in Proceedings of the 23rd USENIX
Conference on Security Symposium, 2014, pp. 719–732.

[36] D. Zhang et al., “A hardware design language for timing-sensitive
information-flow security,” in ASPLOS, 2015.

[37] Y. Zhang et al., “Cross-tenant side-channel attacks in PaaS clouds,” in
Proc. ACM Conf. on Computer and Communications Security (CCS),
2014, pp. 990–1003.

12

