
Architectural Support for Efficient
Large-Scale Automata Processing

Hongyuan Liu∗, Mohamed Ibrahim∗, Onur Kayiran†, Sreepathi Pai‡, and Adwait Jog∗
∗College of William & Mary †Advanced Micro Devices, Inc. ‡University of Rochester
Email: {hliu08,maibrahim}@email.wm.edu, onur.kayiran@amd.com, sree@cs.rochester.edu, ajog@wm.edu

I. THE PROBLEM AND MOTIVATION

With the near-end of Moore’s law and Dennard scaling,
domain-specific architectures are getting extremely popular
in both industry and academia. We focus on accelerating the
processing of Non-deterministic Finite Automata (NFA), a
widely used representation of the popular compute model based
on Finite State Machine (FSM). This model is widely used
for a large set of workloads in the domains such as pattern
matching, data analytics, malware detection, bio-informatics,
XML parsing, browsers, and search engines. In general, NFA-
based applications are very hard to accelerate via traditional
von Neumann architectures (e.g., CPUs and GPUs) because of
the inherent lack of parallelism and irregular memory accesses.
To this end, we propose mechanisms to efficiently architect an
Automata Processor (AP) [1], which is a spatial, in-memory,
and non-von Neumann that takes advantage of the internal and
natural parallelism of memory (DRAM).

One of the fundamental challenges with spatial architectures
such as AP is that program size is a first order concern –
there are a fixed number of STEs available and a spatial
program (e.g., all states across all NFAs) must fit completely
to begin execution. Otherwise, execution may be impossible,
or in the best case multiple rounds of reconfiguration and
input re-execution may be required that can incur significant
performance penalties.

We found in our MICRO’181 paper that not all states of an
NFA are enabled during execution leading to its severe under-
utilization. Specifically, a large fraction of states unnecessarily
take space in the AP chip (leading to its underutilization) but
are not part of any state transitions. We refer to such never-
enabled states as cold states and the remaining (enabled) states
as hot states. Figure 1 quantitatively shows our observation
across 26 diverse applications [1] sorted in the increasing
order of their percentage of hot states (across all NFAs in an
application). We find that on average 59% of states are cold
and it can be up to 99% in applications such as CAV4k. Due to
this underutilization, many applications with a large number of
states (either from the same or different NFAs) are impossible
to execute or need to be split into multiple batches.

1Hongyuan Liu, Mohamed Ibrahim, Onur Kayiran, Sreepathi Pai, and Adwait
Jog, Architectural Support for Efficient Large-Scale Automata Processing, in the
Proceedings of 51st International Conference on Micro-Architecture (MICRO),
Fukuoka, Japan, Oct, 2018

0%
20%
40%
60%
80%
100%

CA
V4

k D
S

CA
V

D
S0
3

D
S0
6

Sn
or
t_
L

D
S0
9

Sn
or
t

H
M
15
00

H
M
50
0

H
M
10
00 H
M

PE
N

TC
P

Rg
1

EM ER
Rg
05

Fe
rm

i
Pr
o

Br
ill LV

Br
o2

17
SP
M

RF
1

RF
2Pe

rc
en

ta
ge
	o
f	s
ta
te
s Hot	(Enabled) Cold	(Never-enabled)

Fig. 1: A large portion of NFA states are cold (never-enabled)
but are still configured on the AP leading to its underutilization.

II. OUR APPROACH

To address the performance overhead incurred due to input
re-executions and re-configurations across multiple batches, we
propose to develop efficient NFA partitioning to accelerate large-
scale NFA applications. The key idea behind the partitioning
mechanism is to allow only the hot and active NFA states to
reside in the AP thereby increasing its throughput and reducing
the number of batches that need to be processed by AP. To

Execution Execution

Execution Cycles

Batch 1
Batch 1 Batch 2

Hot States

Ba
se

lin
e

Compile-time Runtime

input stream

Saved

Time

input stream

input stream

Hot States

Pe
rf

ec
t

Pa
rt

iti
on

in
g

Batch 2

Starting state

Hot state

Cold state

ApplicationA

C

D

E

B

Fig. 2: An illustrative figure showing that by not configuring cold
states on AP, all the hot states can fit onto an AP at the same
time, reducing the number of re-executions over the input and
hence saving time.

illustrate the benefits of configuring the AP with only hot states,
Figure 2 shows two scenarios: a) the baseline AP execution,
and b) the AP that only executes hot states. The execution in
both cases considers the same application (A). In the baseline
scenario, if the number of total states is more than the AP
capacity, the execution will need to be done in batches as
discussed before. In this example, the compiler partitions the
application into two batches, where each batch can individually
fit in the AP (B). Hence, the same input stream is executed
twice in a sequential manner (D). However, with the oracular
knowledge of cold states, the compiler can generate a perfect
partition of the application with only the hot states (C). If
this perfect partition fits in the AP, it can execute on it by

1

consuming the same input stream only once (E), resulting in
significant savings in the execution cycles.

A. Topological-level NFA Partitioning

Any realistic implementation that eliminates cold states from
NFAs (i.e., partitions NFAs into cold and hot states, and only
configures hot states on to the AP) has to deal with at least
three challenges. First, although it is not possible to predict
cold states with 100% accuracy in general, we need to develop
low-overhead techniques to improve the accuracy of prediction
as much as possible. Second, in the case of a mis-prediction,
some transitions may require states that were not configured
on the AP. To this end, we need a mechanism working as a
safety net to handle a transition from a state on the AP to a
state that is not on the AP. Third, to minimize the cost of such
mis-predictions, transitions should be unidirectional to avoid
re-executions of inputs on the AP.

Our proposed partitioning scheme systematically addresses
these challenges. First, we observe that in the majority of
applications, the hot states have low normalized depth (i.e.,
they are closer to the starting state of the NFAs). Therefore,
a state is hot or cold is highly correlated with its normalized
depth. Overall, “shallow” states are more likely to be hot
while “deep” states are more likely to be cold. Based on
this observation, we developed a low-overhead profiling-based
scheme to identify the topological layer that acts as a partition
layer for each NFA in the application. This results in two
sets of states: predicted hot and predicted cold. Second, our
proposed scheme handles transitions out of the AP by adding
intermediate reporting states that piggyback on existing AP
reporting hardware. Finally, to ensure unidirectional transitions,
we partition the NFA at a specific topological order. Since the
matching always proceeds from a lower to a higher topological
order, edges that cross partitions go only in one direction.

B. Handling Mis-predictions

To efficiently handle the intermediate reports generated from
the execution of the predicted hot set, we propose to: a) enable
the states that intermediate reporting state directs to, and b)
continue the matching process from the cycle (i.e., the input
position) where the intermediate report was generated at. In
order to support the aforementioned steps, we propose an
augmented AP which supports two modes: BaseAP mode,
and SparseAP (SpAP) mode. The BaseAP mode execution
is similar to the baseline AP execution, however, AP in this
mode is configured with only the predicted hot set. Once the
execution of BaseAP mode finishes, the generated intermediate
reports are handled in the SpAP mode. In the SpAP mode,
the AP is configured with the predicted cold set. The AP in
this mode not only consumes input symbols but is also driven
by the intermediate reports. In this context, we develop two
major operations for the SpAP mode: enable and jump. The
enable operation allows each intermediate report to enable
the appropriate state in the predicted cold set. The jump
operation skips over the input symbols that are not necessary
for handling the intermediate reports. Since no back-edge exists

Execution Cycles saved via
Hot States

Time

input stream

Execution (BaseAP mode)

Predicted Hot Set

5 14
Intermediate reports

input stream

Remaining
states

Execution
(SpAP mode)

Jump

Predicted Hot Set

R
ea

lis
tic

Pa
rt

iti
on

in
g

Cycles saved via

Hot States

Pe
rf

ec
t

Pa
rt

iti
on

in
g

input stream

Remaining states
(predicted cold set)

Starting state Hot state Cold state

1 2

Jump
dc

Perfect partitioning

Realistic partitioning

a b

a b

Fig. 3: Illustration of performance benefits under realistic parti-
tioning: because of the jump operation, only a portion of input
symbols are executed in the SpAP mode execution.

from predicted cold states to predicted hot states, no back and
forth switching between BaseAP and SpAP modes is required.
Illustrative Example. Figure 2 earlier discussed the per-
formance benefits of perfect partitioning. Under realistic
partitioning, inaccurate predictions of cold states require
intermediate report handling. Figure 3 shows an illustrative
example demonstrating the benefits of executing AP in BaseAP
and SpAP modes. The execution starts in the BaseAP mode
(1) that is configured with the predicted hot set. During its
execution, two intermediate reports are generated at input
position 5 and input position 14, respectively and are stored
(a , b). Once all the input symbols are consumed, the SpAP
mode begins (2), which is driven by both the input stream
and the intermediate reports. If no state is enabled, SpAP
mode jumps to the input position where the next intermediate
report was generated. In this example, initially, it jumps to the
input position 5 of the first intermediate report directly (c).
During the execution, when there is no enabled state (at input
position 8), the SpAP jumps to input position (14) of the next
intermediate report (d). Therefore, under SpAP, only a portion
of the input symbols are executed (green shaded part in 2).

III. SUMMARY OF EVALUATION RESULTS

In summary, we make use of the inherent properties of
NFAs to avoid using compute resources for states that are
never used during execution by a low-cost software/hardware-
coordinated approach. We evaluate our mechanisms with all
(26) applications in the ANMLZoo benchmark suite [1] and
the Regex benchmark suite. We build our mechanisms on top
of the open-source virtual automata simulator – VASim. Across
the evaluated applications, our newly proposed execution model
for AP in conjunction with an accurate/low-overhead profiling
mechanism obtains 2.1× geometric mean speedup (up to
47×) and 32% in performance/area over the baseline AP
execution. In the original paper, we also show additional results
related to sensitivity to AP resources and provide a theoretical
performance model.

REFERENCES

[1] J. Wadden, V. Dang, N. Brunelle, T. Tracy II, D. Guo, E. Sadredini,
K. Wang, C. Bo, G. Robins, M. Stan, and K. Skadron, “ANMLZoo:
A Benchmark Suite for Exploring Bottlenecks in Automata Processing
Engines and Architectures,” in Proceedings of the International Symposium
on Workload Characterization (IISWC), 2016.

2

	The Problem and Motivation
	Our Approach
	Topological-level NFA Partitioning
	Handling Mis-predictions

	Summary of Evaluation Results
	References

