
ACACES 2018 Summer School

GPU Architectures: Basic to
Advanced Concepts

Adwait Jog, Assistant Professor

College of William & Mary
(http://adwaitjog.github.io/)

Course Outline

q Lectures 1 and 2: Basics Concepts
● Basics of GPU Programming
● Basics of GPU Architecture

q Lecture 3: GPU Performance Bottlenecks
● Memory Bottlenecks
● Compute Bottlenecks
● Possible Software and Hardware Solutions

q Lecture 4: GPU Security Concerns
● Timing channels
● Possible Software and Hardware Solutions

Streaming Multi-Processor (SM)

Scratchpad

Control
SM

GPU-1 (Device - 1)
SM SM SM SM

PE PE
PE PE
PE PE
PE PE
PE PE
PE PE
PE PE
PE PE

PE PE
PE PE
PE PE
PE PE
PE PE
PE PE
PE PE
PE PE

Register File

– Threads are assigned to SM in block
granularity

– SM maintains thread/block idx #s
– SM manages/schedules thread execution
– Multiple blocks can be allocated to the SM

– Based on the amount of resources (shared
memory, register file etc.)

GPU Execution Model
qBlocks assigned to each SM are scheduled on the

associated SIMD hardware (i.e., on the Processing
Elements (PEs) or CUDA Cores).

qSM bundles threads (from various blocks) into
warps (wavefronts) and runs them in lockstep on
across PEs.

qAn NVIDIA warp groups 32 consecutive threads
together (AMD wave-fronts group 64 threads
together)

qWarps are:
● Scheduling units in SM
● Scheduled in multiplexed and pipelined manner

on the SM

q Execution in an SM

W1

W2

W3 Computation

Waiting for Data from
GPU Memory

GPU attempts to hide long memory
latency with computation from

other warps

Tolerating Long Latencies

How SMs are able to context switch between warps so
quickly?

Key Points so Far

qProgrammer organize threads into “blocks” (up to
1024 threads per block)

qMotivation: Write parallel software once and run
on future hardware

qHardware spawns more threads/warps than GPU
can run (some may wait)

qWarps associated with blocks can help in
tolerating long latencies.

qGPUs support large register files (for fast context
switching) and high bandwidth memories (for
providing data to large number of concurrent
threads)

GPU Architecture Overview

Single-Instruction, Multiple-Threads

GPU

Interconnection Network

SM Cluster

SM SM

Memory
Partition

GDDR5/HBM

Memory
Partition

GDDR5/HBM

Memory
Partition

GDDR5/HBM Off-chip DRAM

SM Cluster

SM SM

SM Cluster

SM SM

GPU Microarchitecture

qNot many details are publicly available about
GPU microarchitecture.

qModel described next, embodied in GPGPU-
Sim, developed from: white papers,
programming manuals, IEEE Micro articles,
patents.

GPGPU-Sim from UBC – A Cycle-level Simulator

Correlation
~0.976

12

0.00

50.00

100.00

150.00

200.00

250.00

0.00 50.00 100.00 150.00 200.00 250.00

G
PG

PU
-S

im
 IP

C

Quadro FX5800 IPC

HW - GPGPU-Sim Comparison

GPU Instruction Set Architecture (ISA)

q NVIDIA defines a virtual ISA, called “PTX” (Parallel
Thread eXecution)

q More recently, Heterogeneous System Architecture
(HSA) Foundation (AMD, ARM, Imagination,
Mediatek, Samsung, Qualcomm, TI) defined the
HSAIL virtual ISA.

q PTX is Reduced Instruction Set Architecture (e.g.,
load/store architecture)

q Virtual: infinite set of registers (much like a compiler
intermediate representation)

q PTX translated to hardware ISA by backend compiler
(“ptxas”). Either at compile time (nvcc) or at runtime
(GPU driver).

Some Example PTX Syntax

q Registers declared with a type:

.reg .pred p, q, r;

.reg .u16 r1, r2;

.reg .f64 f1, f2;

q ALU operations

add.u32 x, y, z; // x = y + z

mad.lo.s32 d, a, b, c; // d = a*b + c

q Memory operations:

ld.global.f32 f, [a];

ld.shared.u32 g, [b];

st.local.f64 [c], h

q Compare and branch operations:

setp.eq.f32 p, y, 0; // is y equal to zero?

@p bra L1 // branch to L1 if y equal to zero

Inside an SM (1)

q Fine-grained multithreading
● Interleave warp execution to hide latency
● Register values of all threads stays in core

SIMT
Front End SIMD Datapath

Fetch
Decode

Schedule
Branch

Done (Warp ID)

Memory Subsystem Icnt.
NetworkSMem L1 D$ Tex $ Const$

Reg
File

Inside an SM (2)
Schedule
+ Fetch Decode Register

Read Execute Memory Writeback

SIMT Front End SIMD Datapath

ALUALUALU

I-Cache Decode
I-Buffer

Score
Board

Issue Operand
Collector

MEM

ALU
Fetch SIMT-Stack

Done (WID)

Valid[1:N]

Branch Target PC

Pred.Active
Mask

q Three decoupled warp schedulers

q Scoreboard

q Large register file

q Multiple SIMD functional units

Scheduler 1

Scheduler 2

Scheduler 3

Fetch + Decode

qArbitrate the I-cache
among warps
● Cache miss handled by

fetching again later

qFetched instruction is
decoded and then stored
in the I-Buffer
● 1 or more entries / warp
● Only warp with vacant

entries are considered in
fetch

Inst. W1 r
Inst. W2
Inst. W3

v
rv
rv

To
Fetch

Issue

Decode
Score-
Board

Issue
ARB

PC1

PC2

PC3

A
R
B

SelectionTo
I-C

ac
he

Valid[1:N]

I-Cache Decode
I-Buffer

Fetch
Valid[1:N]

Instruction Issue
qSelect a warp and issue an instruction from its

I-Buffer for execution
● Scheduling: Greedy-Then-Oldest (GTO)
● GT200/later Fermi/Kepler:

Allow dual issue (superscalar)
● Fermi: Odd/Even scheduler
● To avoid stalling pipeline might

keep instruction in I-buffer until
know it can complete (replay)

Inst. W1 r
Inst. W2
Inst. W3

v
rv
rv

To
Fetch

Issue

Decode
Score-
Board

Issue
ARB

Scoreboard

qChecks for RAW and WAW
dependency hazard
●Flag instructions with hazards as not ready in

I-Buffer (masking them out from the scheduler)

qInstructions reserves registers at issue

qRelease them at writeback

Operand Collector

(from instruction issue stage)
dispatch

ALU Pipelines

qSIMD Execution Unit

qFully Pipelined

qEach pipe may execute a subset of
instructions

qConfigurable bandwidth and latency
(depending on the instruction)

qDefault: SP + SFU pipes

Memory Unit

qModel timing for memory
instructions

qSupport half-warp (16
threads)
● Double clock the unit
● Each cycle service half

the warp

qHas a private writeback
path

Access
Coalesc.A

G
U

Shared
Mem

Bank
Conflict

Const.
Cache

Texture
Cache

Data
Cache

M
em

or
y

Po
rt

MSHR

Writeback

qEach pipeline has a result bus for
writeback

qException:
●SP and SFU pipe shares a result bus
●Time slots on the shared bus is pre-

allocated

SM Cluster

q Collection of SIMT cores

GPU Architecture Overview

Single-Instruction, Multiple-Threads

GPU

Interconnection Network

SM Cluster

SM SM

Memory
Partition

GDDR5/HBM

Memory
Partition

GDDR5/HBM

Memory
Partition

GDDR5/HBM Off-chip DRAM

SM Cluster

SM SM

SM Cluster

SM SM

Interconnection Network Model

q Intersim (Booksim) a flit level simulator
● Topologies (Mesh, Torus, Butterfly, …)
● Routing (Dimension Order, Adaptive, etc.)
● Flow Control (Virtual Channels, Credits)

q Two separate networks
● From SIMT cores to memory partitions

- Read Requests, Write Requests

● From memory partitions to SIMT cores
- Read Replies, Write Acks

Topology Examples

GPU Architecture Overview

Single-Instruction, Multiple-Threads

GPU

Interconnection Network

SM Cluster

SM SM

Memory
Partition

GDDR3/GDDR5

Memory
Partition

GDDR3/GDDR5

Memory
Partition

GDDR3/GDDR5 Off-chip DRAM

SM Cluster

SM SM

SM Cluster

SM SM

Memory Partition

Interconnection N
etw

ork

Memory Partition

L2
Cache
Bank

DRAM
Access

Scheduler

Off-Chip
DRAM

Channel

DRAM
Timing
Model

Atomic
Operation
Execution

ROP Queue
ICNTàL2 Queue L2àDRAM Queue DRAM Latency

Queue

DRAMàL2 QueueL2àICNT Queue

DRAM

Column Decoder

Memory
Array

Ro
w

 D
ec

od
erM

em
or

y
Co

nt
ro

lle
r

Row BufferRow Buffer

Ro
w

 D
ec

od
er

Column Decoder

Row Buffer

Column Decoder

Row Buffer

DRAM Access

• Row access
– Activate a row or page of

a DRAM bank
– Load it to row buffer

• Column access
– Select and return a block

of data in row buffer
• Precharge

– Write back the opened
row into DRAM

– Otherwise it will be lost!

DRAM Row Access Locality

Row Buffer

DRAM Bank

Rows

tRC = row cycle time

tRP = row precharge time

tRCD = row activate time

Bank Precharge Row A Activate Row B Pre...RB RBRARARARA Precharge Row B Act..
tRP tRCD

tRC

DRAM Bank-level Parallelism

• To increase DRAM
performance and utilization
• Multiple banks per

DRAM chip
• To increase bus width

• Multiple chips per
Memory Controller

Scheduling DRAM Requests

• Scheduling policies supported
• First in first out (FIFO)

• In-order scheduling
• First Ready First Come First Serve (FR-FCFS)

• Out of order scheduling
• Requires associative search

Key GPU Performance Concerns

Key GPU Performance Concerns

– I) Data transfers between CPU and GPU are one
of the major performance bottlenecks.

– II) Data transfers between SMs and global
memory is costly. Can on-chip memory help?

GPU Memory

Cache

ALU
Control

ALU

ALU

ALU

CPU Memory

Bottleneck!

G
PU

 (D
ev

ic
e)

Sc
ra

tc
hp

ad

Re
gi

st
er

s
an

d
Lo

ca
l M

em
or

y

G
PU

 G
lo

ba
l M

em
or

y

Bottleneck!??

SM
SM

SM
SM

CUDA Streams

q CUDA (and OpenCL) provide the capability to overlap
computation on GPU with memory transfers using
“Streams” (Command Queues)

q A Stream orders a sequence of kernels and memory
copy “operations”.

q Operations in one stream can overlap with operations
in a different stream.

How Can Streams Help?

Serial:

Streams:

cudaMemcpy(H2D) kernel<<<>>> cudaMemcpy(D2H)

cudaMemcpy(H2D) K0 DH0

K1 DH1

K2 DH2

Time

Savings

GPU idle GPU idle GPU busy

CUDA Streams

cudaStream_t streams[3];

for(i=0; i<3; i++)

cudaStreamCreate(&streams[i]); // initialize streams

for(i=0; i<3; i++) {

cudaMemcpyAsync(pD+i*size,pH+i*size,size,

cudaMemcpyHostToDevice,stream[i]); // H2D

MyKernel<<<grid,block,0,stream[i]>>>(pD+i,size); // compute

cudaMemcpyAsync(pD+i*size,pH+i*size,size,

cudaMemcpyDeviceToHost,stream[i]); // D2H

}

Manual CPU ó GPU Data Movement
q Problem #1: Programmer needs to

identify data needed in a kernel and insert
calls to move it to GPU

q Problem #2: Pointer on CPU does not
work on GPU since different address
spaces

q Problem #3: Bandwidth connecting CPU
and GPU is order of magnitude smaller
than GPU off-chip

q Problem #4: Latency to transfer data from
CPU to GPU is order of magnitude higher
than GPU off-chip

q Problem #5: Size of GPU DRAM memory
much smaller than size of CPU main
memory

Additional Features in CUDA

q Dynamic Parallelism (CUDA 5 onwards): Launch kernels
from within a kernel. Reduce work for e.g., adaptive
mesh refinement.

q Unified Memory (CUDA 6 onwards): Avoid need for
explicit memory copies between CPU and GPU

http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

See also, Gelado, et al. ASPLOS 2010.

Key GPU Performance Concerns

– I) Data transfers between CPU and GPU are one
of the major performance bottlenecks.

– II) Data transfers between SMs and global
memory are costly. Can on-chip memory help?

GPU Memory

Cache

ALU
Control

ALU

ALU

ALU

CPU Memory

Bottleneck!

G
PU

 (D
ev

ic
e)

Sc
ra

tc
hp

ad

Re
gi

st
er

s
an

d
Lo

ca
l M

em
or

y

G
PU

 G
lo

ba
l M

em
or

y

Bottleneck!

Let’s consider some software approaches first..
before moving on to hardware approaches

Background: GPU Memory Address Spaces

q GPU has three address spaces to support
increasing visibility of data between
threads: local, shared, global

q In addition two more (read-only) address
spaces: Constant and texture.

Partial Overview of CUDA Memories

– Device code can:
– R/W per-thread registers
– R/W all-shared global memory

– Host code can
– Transfer data to/from per grid global

memory

Host

SM

GPU Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

CUDA Device Memory Management API functions

– cudaMalloc()
– Allocates an object in the device global memory
– Two parameters

– Address of a pointer to the allocated object
– Size of allocated object in terms of bytes

– cudaFree()
– Frees object from device global memory
– One parameter

– Pointer to freed object

Host

SM

GPU Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Host-Device Data Transfer API functions

– cudaMemcpy()
– memory data transfer
– Requires four parameters

– Pointer to destination
– Pointer to source
– Number of bytes copied
– Type/Direction of transfer

Host

SM

GPU Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Relatively new Features:

Transfer to device can be asynchronous

Explicit mention of memcpy by the users
can be avoided by new CUDA Unified
Memory

https://devblogs.nvidia.com/unified-
memory-cuda-beginners/

Local address Space

Each thread has own “local memory”

0x42

Example: Location at address 100 for thread 0 is
different from location at address 100 for thread 1.

Contains local variables private to a thread.

Global Address Spaces

thread
block
X

thread
block Y

Each thread in the different
thread blocks (even from
different kernels) can
access a region called
“global memory”.

Commonly in GPGPU
workloads threads write
their own portion of global
memory. Avoids need for
synchronization—slow;
also unpredictable thread
block scheduling.

0x42

Blocks are partitioned after linearization

– Linearized thread blocks are partitioned
– Thread indices within a warp are consecutive and increasing
– Warp 0 starts with Thread 0

– Partitioning scheme is consistent across devices
– Thus you can use this knowledge in control flow
– However, the exact size of warps may change from

generation to generation

– DO NOT rely on any ordering within or between
warps
– If there are any dependencies between threads, you must

__syncthreads() to get correct results.

Warps in Multi-dimensional Thread Blocks

– The thread blocks are first linearized into 1D in row major
order

– In x-dimension first, y-dimension next, and z-dimension last

Reminder: Kernel, Blocks, Threads

“Coalescing” global accesses

qAligned accesses request single 128B cache blk

qMemory Divergence:

ld.global r1,0(r2)

128 255

128 256 1024 1152

ld.global r1,0(r2)

Example: Transpose (CUDA SDK)

__global__ void transposeNaive(float *odata, float* idata, int width)

{

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; // TILE_DIM = 16

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = xIndex + width * yIndex;

int index_out = yIndex + width * xIndex;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { // BLOCK_ROWS = 16

odata[index_out+i] = idata[index_in+i*width];

}

}

NOTE: “xIndex”, “yIndex”, “index_in”, “index_out”, and “i” are in local memory
(local variables are register allocated but stack lives in local memory)

“odata” and “idata” are pointers to global memory
(both allocated using calls to cudaMalloc -- not shown above)

1 2
3 4

1 3
2 4

Write to global memory highlighted above is not “coalesced”.

Scratchpad Memory

Each thread in the same thread
block (work group) can access a
memory region called scratchpad
(or shared memory)

Shared memory address space is
limited in size (16 to 48 KB).

Used as a software managed
“cache” to avoid off-chip memory
accesses.

Synchronize threads in a thread
block using __syncthreads();

thread
block

0x42

Optimizing Transpose for Coalescing

1 2
3 4

idata

odata

1 2
3 4

1 2
3 4

Step 1: Read block of data into shared memory

Step 2: Copy from shared memory into global memory using coalesce write

1 3
2 4

Use of Scratchpad
__global__ void transposescratchpad (float *odata, float *idata, int width)

{

__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;

yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

int index_out = xIndex + (yIndex)*width;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width];

}

__syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i*width] = tile[threadIdx.x][threadIdx.y+i];

}

}
https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/

GOOD: Coalesced write BAD: Shared memory bank conflicts

Bank Conflicts

qTo increase bandwidth common to organize
memory into multiple banks.

q Independent accesses to different banks can
proceed in parallel

Bank 0 Bank 1

0
2
4
6

1
3
5
7

Example 1: Read 0, Read 1
(can proceed in parallel)

Example 2: Read 0, Read 3
(can proceed in parallel)

Bank 0 Bank 1

0
2
4
6

1
3
5
7

Example 3: Read 0, Read 2
(bank conflict)

Bank 0 Bank 1

0
2
4
6

1
3
5
7

Shared Memory Bank Conflicts

__shared__ int A[BSIZE];

…

A[threadIdx.x] = … // no conflicts

0
32
64
96

1
33
65
97

31
63
95
12
7

2
34
66
98

Shared Memory Bank Conflicts

__shared__ int A[BSIZE];

…

A[2*threadIdx.x] = // 2-way conflict

0
32
64
96

1
33
65
97

31
63
95
12
7

2
34
66
98

Optimizing Transpose for Coalescing

1 2
3 4

idata

odata

1 2
3 4

1 2
3 4

Step 1: Read block of data into shared memory

Step 2: Copy from shared memory into global memory using coalesce write

1 3
2 4

Problem: Access two locations in same
shared memory bank.

Eliminate Bank Conflicts
__global__ void transposeNoBankConflicts (float *odata, float *idata, int width)

{

__shared__ float tile[TILE_DIM][TILE_DIM+1];

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;

yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

int index_out = xIndex + (yIndex)* width;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width];

}

__syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i*width] = tile[threadIdx.x][threadIdx.y+i];

}

}

https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/

Optimizing Transpose for Coalescing

1 2
3 4

idata

odata

1 2
3

4

Step 1: Read block of data into shared memory

Step 2: Copy from shared memory into global memory using coalesce write

1 3
2 4

1 2
3

4

Bank 0 Bank 1

Bank 0 Bank 1

Reading Material
q NVIDIA Blogs:

● https://devblogs.nvidia.com/how-access-global-
memory-efficiently-cuda-c-kernels/

● https://devblogs.nvidia.com/efficient-matrix-
transpose-cuda-cc/

q GPGPU-sim Manual and Tutorial Slides
● http://www.gpgpu-sim.org/manual
● http://www.gpgpu-sim.org/micro2012-tutorial/

q More background material: Jog et al., OWL: Cooperative
Thread Array Aware Scheduling Techniques for Improving
GPGPU performance, ASPLOS’13

