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Course Outline

q Lectures 1 and 2: Basics Concepts
● Basics of GPU Programming
● Basics of GPU Architecture

q Lecture 3: GPU Performance Bottlenecks
● Memory Bottlenecks
● Compute Bottlenecks 
● Possible Software and Hardware Solutions

q Lecture 4: GPU Security Concerns
● Timing channels
● Possible Software and Hardware Solutions
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– Threads are assigned to SM in block 
granularity

– SM maintains thread/block idx #s
– SM manages/schedules thread execution
– Multiple blocks can be allocated to the SM

– Based on the amount of resources (shared 
memory, register file etc.)



GPU Execution Model 
qBlocks assigned to each SM are scheduled on the 

associated SIMD hardware (i.e., on the Processing 
Elements (PEs) or CUDA Cores).

qSM bundles threads (from various blocks) into 
warps (wavefronts) and runs them in lockstep on 
across PEs.

qAn NVIDIA warp groups 32 consecutive threads 
together (AMD wave-fronts group 64 threads 
together)

qWarps are:
● Scheduling units in SM
● Scheduled in multiplexed and pipelined manner 

on the SM



q Execution in an SM

W1

W2

W3 Computation

Waiting for Data from 
GPU Memory

GPU attempts to hide long memory 
latency with computation from 

other warps

Tolerating Long Latencies

How SMs are able to context switch between warps so 
quickly? 



Key Points so Far

qProgrammer organize threads into “blocks” (up to 
1024 threads per block)

qMotivation: Write parallel software once and run 
on future hardware

qHardware spawns more threads/warps than GPU 
can run (some may wait)

qWarps associated with blocks can help in 
tolerating long latencies. 

qGPUs support large register files (for fast context 
switching) and high bandwidth memories (for 
providing data to large number of concurrent 
threads)



GPU Architecture Overview
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GPU Microarchitecture

qNot many details are publicly available about 
GPU microarchitecture.

qModel described next, embodied in GPGPU-
Sim, developed from: white papers, 
programming manuals, IEEE Micro articles, 
patents.



GPGPU-Sim from UBC – A Cycle-level Simulator
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GPU Instruction Set Architecture (ISA)

q NVIDIA defines a virtual ISA, called “PTX” (Parallel 
Thread eXecution)

q More recently, Heterogeneous System Architecture 
(HSA) Foundation (AMD, ARM, Imagination, 
Mediatek, Samsung, Qualcomm, TI) defined the 
HSAIL virtual ISA.

q PTX is Reduced Instruction Set Architecture (e.g., 
load/store architecture)

q Virtual: infinite set of registers (much like a compiler 
intermediate representation)

q PTX translated to hardware ISA by backend compiler 
(“ptxas”). Either at compile time (nvcc) or at runtime 
(GPU driver).



Some Example PTX Syntax

q Registers declared with a type:

.reg .pred p, q, r;

.reg .u16 r1, r2;

.reg .f64  f1, f2;

q ALU operations

add.u32 x, y, z;       // x = y + z

mad.lo.s32 d, a, b, c; // d = a*b + c

q Memory operations:

ld.global.f32 f, [a]; 

ld.shared.u32 g, [b];

st.local.f64  [c], h

q Compare and branch operations:

setp.eq.f32 p, y, 0;  // is y equal to zero? 

@p bra L1  // branch to L1 if y equal to zero



Inside an SM (1)

q Fine-grained multithreading
● Interleave warp execution to hide latency
● Register values of all threads stays in core
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Inside an SM (2)
Schedule
+ Fetch Decode Register

Read Execute Memory Writeback

SIMT Front End SIMD Datapath

ALUALUALU

I-Cache Decode
I-Buffer

Score
Board

Issue Operand
Collector

MEM
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Done (WID)

Valid[1:N]

Branch Target PC

Pred.Active
Mask

q Three decoupled warp schedulers

q Scoreboard

q Large register file

q Multiple SIMD functional units

Scheduler 1

Scheduler 2

Scheduler 3



Fetch + Decode

qArbitrate the I-cache 
among warps
● Cache miss handled by 

fetching again later

qFetched instruction is 
decoded and then stored 
in the I-Buffer
● 1 or more entries / warp
● Only warp with vacant 

entries are considered in 
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Instruction Issue
qSelect a warp and issue an instruction from its 

I-Buffer for execution
● Scheduling: Greedy-Then-Oldest (GTO)
● GT200/later Fermi/Kepler: 

Allow dual issue (superscalar)
● Fermi: Odd/Even scheduler
● To avoid stalling pipeline might

keep instruction in I-buffer until
know it can complete (replay)
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Scoreboard

qChecks for RAW and WAW 
dependency hazard
●Flag instructions with hazards as not ready in 

I-Buffer (masking them out from the scheduler)

qInstructions reserves registers at issue

qRelease them at writeback



Operand Collector

(from instruction issue stage)
dispatch



ALU Pipelines

qSIMD Execution Unit

qFully Pipelined

qEach pipe may execute a subset of 
instructions

qConfigurable bandwidth and latency 
(depending on the instruction)

qDefault: SP + SFU pipes



Memory Unit

qModel timing for memory 
instructions

qSupport half-warp (16 
threads) 
● Double clock the unit
● Each cycle service half 

the warp

qHas a private writeback
path
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Writeback

qEach pipeline has a result bus for 
writeback

qException: 
●SP and SFU pipe shares a result bus
●Time slots on the shared bus is pre-

allocated



SM Cluster

q Collection of SIMT cores
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Interconnection Network Model

q Intersim (Booksim) a flit level simulator 
● Topologies (Mesh, Torus, Butterfly, …)
● Routing (Dimension Order, Adaptive, etc. )
● Flow Control (Virtual Channels, Credits)

q Two separate networks
● From SIMT cores to memory partitions

- Read Requests, Write Requests

● From memory partitions to SIMT cores
- Read Replies, Write Acks



Topology Examples
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Memory Partition
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DRAM
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DRAM Access 

• Row access 
– Activate a row or page of 

a DRAM bank
– Load it to row buffer

• Column access
– Select and return a block 

of data in row buffer
• Precharge

– Write back the opened 
row into DRAM 

– Otherwise it will be lost!



DRAM Row Access Locality

Row Buffer

DRAM Bank

Rows

tRC = row cycle time

tRP = row precharge time

tRCD = row activate time

Bank Precharge Row A Activate Row B Pre...RB RBRARARARA Precharge Row B Act..
tRP tRCD

tRC



DRAM Bank-level Parallelism

• To increase DRAM 
performance and utilization
• Multiple banks per 

DRAM chip
• To increase bus width

• Multiple chips per 
Memory Controller



Scheduling DRAM Requests

• Scheduling policies supported
• First in first out (FIFO) 

• In-order scheduling
• First Ready First Come First Serve (FR-FCFS)

• Out of order scheduling
• Requires associative search



Key GPU Performance Concerns



Key GPU Performance Concerns

– I) Data transfers between CPU and GPU are one 
of the major performance bottlenecks.

– II) Data transfers between SMs and global 
memory is costly. Can on-chip memory help?
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CUDA Streams

q CUDA (and OpenCL) provide the capability to overlap 
computation on GPU with memory transfers using 
“Streams” (Command Queues)

q A Stream orders a sequence of kernels and memory 
copy “operations”.   

q Operations in one stream can overlap with operations 
in a different stream.



How Can Streams Help?

Serial:

Streams:

cudaMemcpy(H2D) kernel<<<>>> cudaMemcpy(D2H)

cudaMemcpy(H2D) K0 DH0

K1 DH1

K2 DH2

Time

Savings

GPU idle GPU idle GPU busy



CUDA Streams

cudaStream_t streams[3];

for(i=0; i<3; i++)

cudaStreamCreate(&streams[i]);  // initialize streams

for(i=0; i<3; i++) {

cudaMemcpyAsync(pD+i*size,pH+i*size,size,

cudaMemcpyHostToDevice,stream[i]); // H2D

MyKernel<<<grid,block,0,stream[i]>>>(pD+i,size); // compute

cudaMemcpyAsync(pD+i*size,pH+i*size,size,

cudaMemcpyDeviceToHost,stream[i]); // D2H

}



Manual CPU ó GPU Data Movement
q Problem #1: Programmer needs to 

identify data needed in a kernel and insert 
calls to move it to GPU

q Problem #2: Pointer on CPU does not 
work on GPU since different address 
spaces

q Problem #3: Bandwidth connecting CPU 
and GPU is order of magnitude smaller 
than GPU off-chip

q Problem #4: Latency to transfer data from 
CPU to GPU is order of magnitude higher 
than GPU off-chip

q Problem #5: Size of GPU DRAM memory 
much smaller than size of CPU main 
memory



Additional Features in CUDA

q Dynamic Parallelism (CUDA 5 onwards): Launch kernels 
from within a kernel.   Reduce work for e.g., adaptive 
mesh refinement.

q Unified Memory (CUDA 6 onwards): Avoid need for 
explicit memory copies between CPU and GPU

http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

See also, Gelado, et al. ASPLOS 2010. 



Key GPU Performance Concerns

– I) Data transfers between CPU and GPU are one 
of the major performance bottlenecks.

– II) Data transfers between SMs and global 
memory are costly. Can on-chip memory help?
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Let’s consider some software approaches first..
before moving on to hardware approaches 



Background: GPU Memory Address Spaces

q GPU has three address spaces to support 
increasing visibility of data between 
threads: local, shared, global 

q In addition two more (read-only) address 
spaces: Constant and texture.



Partial Overview of CUDA Memories

– Device code can:
– R/W per-thread registers
– R/W all-shared global memory

– Host code can
– Transfer data to/from per grid global 

memory 

Host

SM

GPU Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers



CUDA Device Memory Management API functions

– cudaMalloc()
– Allocates an object in the device global memory
– Two parameters

– Address of a pointer to the allocated object
– Size of allocated object in terms of bytes

– cudaFree()
– Frees object from device global memory
– One parameter

– Pointer to freed object

Host

SM

GPU Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers



Host-Device Data Transfer API functions

– cudaMemcpy()
– memory data transfer
– Requires four parameters

– Pointer to destination 
– Pointer to source
– Number of bytes copied
– Type/Direction of transfer

Host

SM

GPU Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Relatively new Features:

Transfer to device can be asynchronous

Explicit mention of memcpy by the users 
can be avoided by new CUDA Unified 
Memory

https://devblogs.nvidia.com/unified-
memory-cuda-beginners/



Local address Space

Each thread has own “local memory”

0x42

Example: Location at address 100 for thread 0 is 
different from location at address 100 for thread 1.

Contains local variables private to a thread.



Global Address Spaces

thread 
block 
X

thread 
block Y

Each thread in the different 
thread blocks (even from 
different kernels) can 
access a region called 
“global memory”.

Commonly in GPGPU 
workloads threads write 
their own portion of global 
memory.  Avoids need for 
synchronization—slow; 
also unpredictable thread 
block scheduling.

0x42



Blocks are partitioned after linearization

– Linearized thread blocks are partitioned 
– Thread indices within a warp are consecutive and increasing
– Warp 0 starts with Thread 0

– Partitioning scheme is consistent across devices
– Thus you can use this knowledge in control flow
– However, the exact size of warps may change from 

generation to generation

– DO NOT rely on any ordering within or between 
warps
– If there are any dependencies between threads, you must 

__syncthreads() to get correct results.



Warps in Multi-dimensional Thread Blocks

– The thread blocks are first linearized into 1D in row major 
order

– In x-dimension first, y-dimension next, and z-dimension last



Reminder: Kernel, Blocks, Threads



“Coalescing” global accesses

qAligned accesses request single 128B cache blk

qMemory Divergence:

ld.global r1,0(r2)

128 255

128 256 1024 1152

ld.global r1,0(r2)



Example: Transpose (CUDA SDK) 

__global__ void transposeNaive(float *odata, float* idata, int width)

{

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;  // TILE_DIM = 16

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = xIndex + width * yIndex;

int index_out = yIndex + width * xIndex;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { // BLOCK_ROWS = 16

odata[index_out+i] = idata[index_in+i*width];

}

}

NOTE: “xIndex”, “yIndex”, “index_in”, “index_out”, and “i” are in local memory 
(local variables are register allocated but stack lives in local memory)

“odata” and “idata” are pointers to global memory
(both allocated using calls to cudaMalloc -- not shown above)

1 2
3 4

1 3
2 4

Write to global memory highlighted above is not “coalesced”.



Scratchpad Memory

Each thread in the same thread 
block (work group) can access a 
memory region called scratchpad 
(or shared memory)

Shared memory address space is 
limited in size (16 to 48 KB).

Used as a software managed 
“cache” to avoid off-chip memory 
accesses.

Synchronize threads in a thread 
block using __syncthreads();

thread 
block

0x42



Optimizing Transpose for Coalescing

1 2
3 4

idata

odata

1 2
3 4

1 2
3 4

Step 1:   Read block of data into shared memory

Step 2:   Copy from shared memory into global memory using coalesce write

1 3
2 4



Use of Scratchpad
__global__ void transposescratchpad (float *odata, float *idata, int width)

{

__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;  

int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;

yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

int index_out = xIndex + (yIndex)*width;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width];

}

__syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i*width] = tile[threadIdx.x][threadIdx.y+i];

}

}
https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/

GOOD: Coalesced write BAD: Shared memory bank conflicts



Bank Conflicts

qTo increase bandwidth common to organize 
memory into multiple banks.

q Independent accesses to different banks can 
proceed in parallel

Bank 0 Bank 1 
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Example 1:  Read 0, Read 1
(can proceed in parallel)

Example 2:  Read 0, Read 3
(can proceed in parallel)
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Example 3:  Read 0, Read 2
(bank conflict)
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Shared Memory Bank Conflicts

__shared__ int A[BSIZE];

…

A[threadIdx.x] = … // no conflicts
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Shared Memory Bank Conflicts

__shared__ int A[BSIZE];

…

A[2*threadIdx.x] = // 2-way conflict
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Optimizing Transpose for Coalescing
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idata

odata
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Step 1:   Read block of data into shared memory

Step 2:   Copy from shared memory into global memory using coalesce write

1 3
2 4

Problem: Access two locations in same
shared memory bank.



Eliminate Bank Conflicts
__global__ void transposeNoBankConflicts (float *odata, float *idata, int width)

{

__shared__ float tile[TILE_DIM][TILE_DIM+1];

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;  

int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;

yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

int index_out = xIndex + (yIndex)* width;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width];

}

__syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i*width] = tile[threadIdx.x][threadIdx.y+i];

}

}

https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/



Optimizing Transpose for Coalescing
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idata

odata
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Step 1:   Read block of data into shared memory

Step 2:   Copy from shared memory into global memory using coalesce write

1 3
2 4
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Bank 0 Bank 1 

Bank 0 Bank 1 



Reading Material
q NVIDIA Blogs: 

● https://devblogs.nvidia.com/how-access-global-
memory-efficiently-cuda-c-kernels/

● https://devblogs.nvidia.com/efficient-matrix-
transpose-cuda-cc/

q GPGPU-sim Manual and Tutorial Slides
● http://www.gpgpu-sim.org/manual
● http://www.gpgpu-sim.org/micro2012-tutorial/

q More background material: Jog et al., OWL: Cooperative 
Thread Array Aware Scheduling Techniques for Improving 
GPGPU performance, ASPLOS’13


