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Course Outline

q Lectures 1 and 2: Basics Concepts
● Basics of GPU Programming
● Basics of GPU Architecture

q Lecture 3: GPU Performance Bottlenecks
● Memory Bottlenecks
● Compute Bottlenecks 
● Possible Software and Hardware Solutions

q Lecture 4: GPU Security Concerns
● Timing channels
● Possible Software and Hardware Solutions



Era of Heterogeneous Architectures

Intel Coffee Lake and 
Kaby Lake AMD Raven Ridge



Discrete GPUs



Discrete GPUs + Intel Processors



Security Concerns 

qGPUs may be accelerating applications that 
are using user-sensitive data (e.g., genomics, 
financial)

qGPUs may be accelerating cryptographic 
applications (e.g., AES, RSA etc.) and 
authentication algorithms on-behalf of CPUs

qGiven the popularity of GPUs, it is imperative 
to keep GPUs secure against a variety of 
side-channel attacks and other security 
vulnerabilities.



Security Attacks 

qUser’s web activity on GPU can be 
tracked by the malicious attacker 
who is co-located on the same card 
[Oakland’14]

qAES private keys can be recovered 
by correlation timing attacks 
[HPCA’16]

qAccelerating attacks via GPUs 
[Oakland’18]
●Glitch: Accelerating row hammer attacks



Correlation Timing Attacks
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Memory Access Coalescing in GPUs
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Memory Access Coalescing in GPUs
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Memory Access Coalescing in GPUs
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AES implementation on GPU
q Symmetric Encryption with 128-bit key and 10 

rounds.

q S-box implementation involves table lookups.

q [Jiang/Fei/Kaeli, HPCA’16] demonstrated that the 
last round is vulnerable.



Last Round of AES on GPU

𝑐"#$% = 	𝑇)[𝑡$#$%] 	⊕	𝑘"
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Correlation Timing Attack on GPU

q Goal of the attack: Recover the AES Key (byte-by-byte)

q Last Round of AES is vulnerable

q Last Round is invertible

𝑐"#$% = 	𝑇)[𝑡$#$%] 	⊕	𝑘"

𝑡$#$% = 	𝑇)/0[𝑐"#$% 	⊕ 𝑘"]
Memory access

of thread tid

How an attacker can calculate the 
number of coalesced accesses?



Attacker calculates the # of coalesced accesses
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Coalesced Accesses and Execution Time

Associate the number of coalesced accesses with 
execution time



Finding the Correct Key Value
q Attacker encrypts ‘N’ number of plaintexts over server

● Records Ciphertext and Execution time
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Simulating Timing Attack on our Set-up

Correct guess

Incorrect guesses

Why is Correlation Timing Attack 
possible?
• The baseline attack leverages the deterministic nature of 

the coalescing mechanism
• AES key value affects the coalesced accesses
• # coalesced accesses affects the execution time

How to mitigate Correlation Timing 
Attacks on GPU?

Answer: By making it harder for the 
attacker to correctly calculate the number 

of coalesced accesses



Naïve Solution

q Disable coalescing altogether?
● Correlation drops to ~0
● Correct key byte is indistinguishable

q Up to 178% performance degradation
● Degradation increases with plaintext size

Correct guess

Naïve solution is Good for Security, Bad for Performance
Offers no tradeoff

• Targets the deterministic nature of the coalescing 
mechanism
• Fixed number of subwarps (or subwavefronts)
• Fixed sizes of subwarp (or subwavefronts)
• Deterministic mapping of the thread elements to subwarps (or 

subwavefronts)

RCoal to mitigate the correlation timing
attacks



RCoal: Fixed Sized Subwarp (FSS)
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FSS Security against Baseline Attack

• Correlation between the 
number of coalesced 
accesses and the execution 
time drops

• Correct key byte is harder to 
find

• Improved security 



FSS Performance

• Memory accesses increase with 
number of subwarps

• Execution time increases with 
number of subwarps

• Performance degrades as number 
of subwarp increase

Can attacker still recover the AES key?



FSS against FSS attack

qAttacker can figure out the number 
of subwarps



FSS against FSS attack

qAttacker can figure out the number 
of subwarps

qAttacker can calculate per subwarp
accesses

Correct guess



FSS against FSS attack
q Attack possible when the attacker can 

figure out number of subwarps!
● Coalescing still deterministic

• Targets the deterministic nature of the coalescing 
mechanism
• Fixed number of subwarps
• Fixed sizes of subwarp
• Deterministic mapping of the thread elements to subwarps

RCoal to mitigate the correlation timing
attacks



RCoal: Random Sized Subwarp (RSS)q Size distribution

Normal Distribution Skewed Distribution
• Mean of the distribution is same as FSS
• Security and performance similar to FSS

We select RSS with Skewed Distribution

• Mean of the distribution is different than FSS
• Large subwarp offers better coalescing
• Improved security compared to FSS
• Improved performance compared to FSS

û ü

RCoal to mitigate the correlation timing
attacks

• Targets the deterministic nature of the coalescing 
mechanism
• Fixed number of subwarps
• Fixed sizes of subwarp
• Deterministic mapping of the thread elements to subwarps

RCoal to mitigate the correlation timing
attacks



RCoal: Random-Threaded Subwarp (RTS)
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RCoal: Random-Threaded Subwarp (RTS)
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Evaluation Set-up

qAES-128

qPlaintext with 32 lines

qGPGPU-SIM
● 15 SMs, 32 threads/warp, one subwarp per 

coalescing unit (base case)
● GDDR5 Memory with 6 MCs, 16 DRAM-banks, 4 

bank-groups/MC

q Enhanced Attack Algorithms
●Corresponding Attacks



Performance/Security Trade-off
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Conclusions
qWe discussed RCoal, a set of three novel defense 

mechanisms
● To mitigate the correlation timing attacks
● Randomizes the memory access coalescing
● Scales with the plaintext size (analysis in paper)
● Theoretical analysis in the paper

qRCoal offers a trade-off between security and 
performance and improves security at a modest 
performance loss.



Food for thought

q Improving security at lower performance 
cost
●Can we randomize logic at other parts of the memory 

hierarchy?
- GPU Cache Management
- GPU Bandwidth Management (e.g., MSHRs)
- GPU Prefetching and Memory Scheduling 

●Can we leverage software-driven hints?
- Only randomize when “security-critical” sections of the code are 

executing
- How do we identify “security-critical” sections? If yes, can we 

automate the process? 
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