
ACACES 2018 Summer School

GPU Architectures: Basic to
Advanced Concepts

Adwait Jog, Assistant Professor

College of William & Mary
(http://adwaitjog.github.io/)

Course Outline

q Lectures 1 and 2: Basics Concepts
● Basics of GPU Programming
● Basics of GPU Architecture

q Lecture 3: GPU Performance Bottlenecks
● Memory Bottlenecks
● Compute Bottlenecks
● Possible Software and Hardware Solutions

q Lecture 4: GPU Security Concerns
● Timing channels
● Possible Software and Hardware Solutions

Era of Heterogeneous Architectures

Intel Coffee Lake and
Kaby Lake AMD Raven Ridge

Discrete GPUs

Discrete GPUs + Intel Processors

Security Concerns

qGPUs may be accelerating applications that
are using user-sensitive data (e.g., genomics,
financial)

qGPUs may be accelerating cryptographic
applications (e.g., AES, RSA etc.) and
authentication algorithms on-behalf of CPUs

qGiven the popularity of GPUs, it is imperative
to keep GPUs secure against a variety of
side-channel attacks and other security
vulnerabilities.

Security Attacks

qUser’s web activity on GPU can be
tracked by the malicious attacker
who is co-located on the same card
[Oakland’14]

qAES private keys can be recovered
by correlation timing attacks
[HPCA’16]

qAccelerating attacks via GPUs
[Oakland’18]
●Glitch: Accelerating row hammer attacks

Correlation Timing Attacks

Plaintexts Ciphertexts Time
durationPlaintext # 1 time1

timestart - timestop = time1

Plaintext # 2 time2

Plaintext # 3 time3

… …

Outside Attacker

Server@GPU

Ciphertext # 1
Ciphertext # 2
Ciphertext # 3
…

K1 , K2 , … , K
i

, …

Key guesses

Correct KeyCorrect Key??

Memory Access Coalescing in GPUs

Computing Unit
Wavefront pool
Wavefront

Thread # 1 Thread # 32. . .

Scheduler

LD/ST Unit

Global Memory

Coalescing Unit

Memory Access Coalescing in GPUs

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

0x00 0x04 0x07 0x09
tid =	0 tid =	1 tid =	2 tid =	3

0x04 0x05 0x06 0x07

Wavefront
tid = thread id

Block Address # 0

Block Address # 1

Block Address # 1

Block Address # 2

Memory Access Coalescing in GPUs

Coalescing	Unit

0x00 0x01 0x02 0x03

0x08 0x09 0x0A 0x0B

0x00 0x04 0x07 0x09
tid =	0 tid =	1 tid =	2 tid =	3

0x04 0x05 0x06 0x07

Wavefront
tid = thread id

Block Address # 0

Block Address # 1

Block Address # 2

AES implementation on GPU
q Symmetric Encryption with 128-bit key and 10

rounds.

q S-box implementation involves table lookups.

q [Jiang/Fei/Kaeli, HPCA’16] demonstrated that the
last round is vulnerable.

Last Round of AES on GPU

𝑐"#$% = 	𝑇)[𝑡$#$%] 	⊕	𝑘"

LINE # 1

LINE # 2

LINE # 32

… …

Last Round of AES on GPU

ti1

ti2

ti32

.

.

.

Input text
to Last Round

… ….
.
.

Thread # 1

Thread # 2

.

.

.

Thread # 32

𝑐"#$% = 	𝑇)[𝑡$#$%] 	⊕	𝑘"

.

.

.

T4[ti2]

T4[ti1]

T4[ti32]

Request # 1

Request # 2

.

.

.

Request # 32
C

oa
le

sc
in

g
U

ni
t

.

.

.

⊕kj

⊕kj

⊕kj

Replies # 1

Replies # 2

.

.

.

Replies # 32

cj
1

cj
2

cj
32

.

.

.

Ciphertext

Correlation Timing Attack on GPU

q Goal of the attack: Recover the AES Key (byte-by-byte)

q Last Round of AES is vulnerable

q Last Round is invertible

𝑐"#$% = 	𝑇)[𝑡$#$%] 	⊕	𝑘"

𝑡$#$% = 	𝑇)/0[𝑐"#$% 	⊕ 𝑘"]
Memory access

of thread tid

How an attacker can calculate the
number of coalesced accesses?

Attacker calculates the # of coalesced accesses

𝑡$#$% = 	𝑇)/0[𝑐"#$% 	⊕ 𝑘"]

… …

cj
1

cj
2

cj
32

.

.

.

Ciphertext

.

.

.

⊕kj
m

⊕kj
m

⊕kj
m

.

.

.

.

.

.

T4
-1[cj

2⊕kj
m]

T4
-1[cj

1⊕kj
m]

T4
-

1[cj
32⊕kj

m]

ti1,m

ti2,m

ti32,m

.

.

.

Guessed Table
Lookup Indices

.

.

.

.

.

.

C
oa

le
sc

ed
 A

cc
es

se
s

(A
jm

,n
)Correct value of key byte?

Coalesced Accesses and Execution Time

Associate the number of coalesced accesses with
execution time

Finding the Correct Key Value
q Attacker encrypts ‘N’ number of plaintexts over server

● Records Ciphertext and Execution time

Aj0,1, Aj0,2, , Aj0,N E1,E2,...,ENKey Guess 0

Key Guess 1

Key
Guess 255

Corrj0

Corrj1

Corrj255

Key
Guess α

Corrjα
Maximum

Correlation

Aj1,1, Aj1,2, , Aj1,N

Ajα,1, Ajα,2, , Ajα,N

Aj255,1, Aj255,2, ,Aj255,N

. . .

. . .

. . .

. . .

Recorded
Execution Time

Correct
Key Byte

of Coalesced Accesses Correlations

Simulating Timing Attack on our Set-up

Correct guess

Incorrect guesses

Why is Correlation Timing Attack
possible?
• The baseline attack leverages the deterministic nature of

the coalescing mechanism
• AES key value affects the coalesced accesses
• # coalesced accesses affects the execution time

How to mitigate Correlation Timing
Attacks on GPU?

Answer: By making it harder for the
attacker to correctly calculate the number

of coalesced accesses

Naïve Solution

q Disable coalescing altogether?
● Correlation drops to ~0
● Correct key byte is indistinguishable

q Up to 178% performance degradation
● Degradation increases with plaintext size

Correct guess

Naïve solution is Good for Security, Bad for Performance
Offers no tradeoff

• Targets the deterministic nature of the coalescing
mechanism
• Fixed number of subwarps (or subwavefronts)
• Fixed sizes of subwarp (or subwavefronts)
• Deterministic mapping of the thread elements to subwarps (or

subwavefronts)

RCoal to mitigate the correlation timing
attacks

RCoal: Fixed Sized Subwarp (FSS)

Coalescing	Unit

0x00 0x01 0x02 0x03

0x08 0x09 0x0A 0x0B

DEFAULT:	number	of	subwarps =	1

0x00

sid =	0

0x04 0x07 0x09
tid =	0 tid =	1 tid =	2 tid =	3

0x04 0x05 0x06 0x07

Coalescing	Unit

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

FSS:	number	of	subwarps =	2

0x00

sid =	0

0x04 0x07

sid =	1

0x09
tid =	0 tid =	1 tid =	2 tid =	3

0x04 0x05 0x06 0x07

FSS Security against Baseline Attack

• Correlation between the
number of coalesced
accesses and the execution
time drops

• Correct key byte is harder to
find

• Improved security

FSS Performance

• Memory accesses increase with
number of subwarps

• Execution time increases with
number of subwarps

• Performance degrades as number
of subwarp increase

Can attacker still recover the AES key?

FSS against FSS attack

qAttacker can figure out the number
of subwarps

FSS against FSS attack

qAttacker can figure out the number
of subwarps

qAttacker can calculate per subwarp
accesses

Correct guess

FSS against FSS attack
q Attack possible when the attacker can

figure out number of subwarps!
● Coalescing still deterministic

• Targets the deterministic nature of the coalescing
mechanism
• Fixed number of subwarps
• Fixed sizes of subwarp
• Deterministic mapping of the thread elements to subwarps

RCoal to mitigate the correlation timing
attacks

RCoal: Random Sized Subwarp (RSS)q Size distribution

Normal Distribution Skewed Distribution
• Mean of the distribution is same as FSS
• Security and performance similar to FSS

We select RSS with Skewed Distribution

• Mean of the distribution is different than FSS
• Large subwarp offers better coalescing
• Improved security compared to FSS
• Improved performance compared to FSS

û ü

RCoal to mitigate the correlation timing
attacks

• Targets the deterministic nature of the coalescing
mechanism
• Fixed number of subwarps
• Fixed sizes of subwarp
• Deterministic mapping of the thread elements to subwarps

RCoal to mitigate the correlation timing
attacks

RCoal: Random-Threaded Subwarp (RTS)

FSS:	number	of	subwarps =	2

0x00

sid =	0

0x01

sid =	0

0x06

sid =	1

0x07

sid =	1

tid =	0 tid =	1 tid =	2 tid =	3

FSS+RTS:	number	of	subwarps =	2

0x00 0x01 0x06 0x07
tid =	0 tid =	1 tid =	2 tid =	3

Coalescing	Unit

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0x07

Coalescing	Unit

0x00 0x01 0x02 0x03

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0x07

0x04 0x05 0x06 0x07

sid =	0 sid =	0 sid =	1 sid =	1

RCoal: Random-Threaded Subwarp (RTS)

RSS:	number	of	subwarps =	2

0x00

sid =	0

0x01

sid =	1

0x06 0x08
tid =	0 tid =	1 tid =	2 tid =	3

RSS+RTS:	number	of	subwarps =	2

0x00

sid =	1

0x010x06

sid =	0

0x08
tid =	0 tid =	1tid =	2 tid =	3

Coalescing	Unit

0x00 0x01 0x02 0x03

0x00 0x01 0x02 0x03

Coalescing	Unit

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B

Evaluation Set-up

qAES-128

qPlaintext with 32 lines

qGPGPU-SIM
● 15 SMs, 32 threads/warp, one subwarp per

coalescing unit (base case)
● GDDR5 Memory with 6 MCs, 16 DRAM-banks, 4

bank-groups/MC

q Enhanced Attack Algorithms
●Corresponding Attacks

Performance/Security Trade-off

0

1

2

1 2 4 8 16 32Co
rr
el
at
io
n

Number	of	Subwarps
FSS FSS+RTP RSS RSS+RTP

0

0.5

1

1.5

1 2 4 8 16 32

Ex
ec
ut
io
n	
Ti
m
e

Number	of	Subwarps
FSS FSS+RTS RSS RSS+RTS

Security
(Lower the better)

Execution Time
(Lower the better)

Offers Security/Performance Trade-off

Conclusions
qWe discussed RCoal, a set of three novel defense

mechanisms
● To mitigate the correlation timing attacks
● Randomizes the memory access coalescing
● Scales with the plaintext size (analysis in paper)
● Theoretical analysis in the paper

qRCoal offers a trade-off between security and
performance and improves security at a modest
performance loss.

Food for thought

q Improving security at lower performance
cost
●Can we randomize logic at other parts of the memory

hierarchy?
- GPU Cache Management
- GPU Bandwidth Management (e.g., MSHRs)
- GPU Prefetching and Memory Scheduling

●Can we leverage software-driven hints?
- Only randomize when “security-critical” sections of the code are

executing
- How do we identify “security-critical” sections? If yes, can we

automate the process?

References

qRCoal: Mitigating GPU Timing Attack via
Subwarp-based Randomized Coalescing
Techniques, HPCA’18

qA Complete Key Recovery Timing Attack
on a GPU, HPCA’16

qGrand Pwning Unit: Accelerating
Microarchitectural Attacks with the GPU,
Oakland’18

