ACACES 2018 Summer School

GPU Architectures: Basic to
Advanced Concepts

Adwait Jog, Assistant Professor

College of William & Mary
(http://adwaitjog.github.io/)

Course Outline

Q Lectures 1 and 2: Basics Concepts

® Basics of GPU Programming
® Basics of GPU Architecture

A Lecture 3: GPU Performance Bottlenecks

® Memory Bottlenecks
® Compute Bottlenecks
® Possible Software and Hardware Solutions

2 Lecture 4: GPU Security Concerns

® Timing channels
® Possible Software and Hardware Solutions

Era of Heterogeneous Architectures

Intel Coffee Lake and
Kaby Lake

Menmory Controller B

AMD Raven Ridge

DDRAIME

g — Integrated
PliOCEeSSO

CPU

ISR L

‘ -1 ’ 3 ! S Corer2l MG Itimedia
System _EE g Eneine
Agent éé i §§ = "- % o -H] ﬂuvmega” m%

Display Ctrl
1/0 Ctri

CPU # CPU |

Core a1 'Core

IntegratediNonthbridge e

Discrete GPUs

BPU-ARCHITECTURE ROADMAP

Navi
Scalability

Nexgen Memory
Vega

HBMZ

Polaris
2.5x% :)foll'h'a“

-
e
i+
>
S~
Y
-
[45)
Q.

28nm GPUs e

1x perfiwatt

2015 2016 2017 , . - 2018-° . . 2019

Projected roadmap, subject to change

RADEDN |

Discrete GPUs + Intel Processors

Max Turbo Compare
Product Name Status Launch Date # of Cores Frequency All None
Intel® Core™ i7-8809G Processor
with Radeon™ RX Vega M GH Announced Q1'18 4 4.20 GHz
graphics
Intel® Core™ i7-8709G Processor
with Radeon™ RX Vega M GH Announced Q118 4 4.10 GHz
graphics
Intel® Core™ i7-8706G Processor
with Radeon™ RX Vega M GL Announced Q118 4 4.10 GHz
graphics
Intel® Core™ i7-8705G Processor
with Radeon™ RX Vega M GL Announced Q118 4 4.10 GHz

graphics

Intel® Core™ i5-8305G Processor
with Radeon™ RX Vega M GL Announced Q118 4 3.80 GHz
graphics

Security Concerns

1GPUs may be accelerating applications that
are using user-sensitive data (e.g., genomics,
financial)

1GPUs may be accelerating cryptographic
applications (e.g., AES, RSA etc.) and
authentication algorithms on-behalf of CPUs

2 Given the popularity of GPUSs, it is imperative
to keep GPUs secure against a variety of
side-channel attacks and other security
vulnerabilities.

Security Attacks

aUser’s web activity on GPU can be

tracked by the malicious attacker

who Is co-located on the same card
[Oakland’14]

QAES private keys can be recovered

by correlation timing attacks
[HPCA'10]

QAccelerating attacks via GPUs
[Oakland’18]

o Glitch: Accelerating row hammer attacks

Correlation Timing Attacks

Server@GPU

£ Plaintexts | | Ciphertexts |Time
o duration

Plaintext # P Ciphertext # 2 time,
Plaintext # B Ciphertext # 3 time,

‘ Correct KR €orrect Key
Q% D [K Ky, -}

. . . |
Outside Attacker tiMeg,; - timeg,, = time, Key guesses

Memory Access Coalescing in GPUs

Computing Unit

Wavefront pool
Wavefront

Thread # 1 L. Thread # 32

LD/ST Unit

N

| Global Memory |

Memory Access Coalescing in GPUs

Wavefront
tid = thread id

tid=0 | tid=1 | tid=2 | tid=3
0x00 0x04 0x07 0x09

434 33

Block Address # 0 0x00 0x01 0x02 0x03

Block Address # 1

Block Address # 1

Block Address # 2 0x08 0x09 Ox0A 0x0B

Memory Access Coalescing in GPUs

Wavefront
tid = thread id
, —————————————— ~
| | tid=0 | tid=1 | tid=2 | tid=3 | !
| 0x00 0x04 0x07 0x09 |
J—1 - 1 -] - J

Coalescing Unit

.

Block Address # 0O 0x00 0x01 0x02 0x03

(Blook Adcress # 1[04 | oo [ooc [em |

Block Address # 2 0x08 0x09 Ox0A 0x0B

AES implementation on GPU

2 Symmetric Encryption with 128-bit key and 10
rounds.

1 S-box implementation involves table lookups.

2 [Jiang/Fei/Kaeli, HPCA'16] demonstrated that the
last round is vulnerable.

Last Round of AES on GPU

[C].tid]:[T4[titid]I€B k,}

Last Round of AES on GPU

1 Thread # 1 Ll 7,0t Request # 1 >
t2 Thread#2 LI T,[t?] Request # 2 >
H t2 p Thread # 32| T,[t32] ||Request # 32’

Input text
to Last Round

T :[T4 @]IEB k]]

Coalescing
Unit

Replies # 1
eplies b ok | . cj1
Replies # 2
Replies # 32| | |
Ciphertext

Correlation Timing Attack on GPU

1 Goal of the attack: Recover the AES Key (byte-by-byte)

0 Last Round of AES is vulnerable

Memory acces
of thread tid

How an attacker can calculate the
number of coalesced accesses?

Attacker calculates the # of coalesced accesses

Guessed Table
Lookup Indice

‘1 —

CJF 2,m |
N Correct value of key byte? }_

(Ajm’n)

Y
Coalesced Accesses

I =3
32 4 32,
G | @kjm '_r 132k m] t>=m
Ciphertext

Coalesced Accesses and Execution Time

—— Total Execution Time
----- Last Round Execution Time

O 1.3
£
|_
E§12-
N
€ 1.1
S
pa
1.0 | | |
15 20 25 30
Number of

Last Round Coalesced Accesses

[Associate the number of coalesced accesses with }

execution time

Finding the Correct Key Value

0 Attacker encrypts ‘N’ number of plaintexts over server
® Records Ciphertext and Execution time

Recorded
=== _# _Oi Qo_al_e_scieg LA‘QC_e§S_e§ - - 'JixewﬂQn_ije_\ Correlations
| —
I
Key Guess O: A%, A%2, > AN " : E, Ey, >En | Corr,®
_____________________ e ___—_—
1
Key Guess 1 Corry
O ™ = mm mm mm e Em mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm b . P = = = =
I Maximum)
: Key ! Correct | : Corrye |
'Guessa p—2 = 3 - 0 00000- J | ,Key Byte Correlation! |3 |
Key 255,1 255,2 255
Guess 255 A5 > A >t o0 Corr;

How to mitigate Correlation Timing
Attacks on GPU?

Answer: By making it harder for the
attacker to correctly calculate the number
of coalesced accesses

RCoal to mitigate the correlation timing
attacks

» Targets the deterministic nature of the coalescing
mechanism

« Fixed number of subwarps (or subwavefronts)
* Fixed sizes of subwarp (or subwavefronts)

« Deterministic mapping of the thread elements to subwarps (or
subwavefronts)

RCoal: Fixed Sized Subwarp (FSS)

DEFAULT: number of subwarps =1 FSS: number of subwarps = 2

tid=0

tid=1

tid=2

tid=3

0x00

0x04

0x07

0x09

Coalescing Unit

¥

0x00 0x01 0x02 0x03
0x04 0x05 0x06 0x07
0x08 0x09 Ox0A 0Ox0B

Coalescing Unit

¥

0x00

Co) o

0x04

0x01 0x02

0x05

0x08

0x09

FSS Security against Baseline Attack

e Correlation between the
number of coalesced
accesses and the execution
time drops

« Correct key byte is harder to
find

* Improved security

=
o
o

o
~
Ul

o
N
Ul

Average Correlation
o
un
o

in._

1 2 4 8 16 32
Number of Subwarps

o
o
=}

FSS Performance

 Memory accesses increase with
number of subwarps

« Execution time increases with
number of subwarps

« Performance degrades as number -
of subwarp increase

Normalized Execution Time

v
- N w

=
o

—«— Execution Time
—e--- Total Memory Accesses | |

5 10 15 20 25 30

Number of Subwarps

[Can attacker still recover the AES key?

J

N
Ul

N
o

Normalized Total Memory

=
Ul

-
o

Accesses

FSS against FSS attack

2 Attacker can figure out the number

of subwarps

Normalized Execution Time
|_I

=
w

=

=

=
o

N

—*— Execution Time
—e-- Total Memory Accesses |}

5 10 15 20 25 30
Number of Subwarps

= it N
.U'I o ul
Normalized Total Memory
Accesses

=
o

FSS against FSS attack

2 Attacker can figure out the number
of subwarps

1 Attacker can calculate per subwarp
accesses

- Correct guess

'.‘ O o.. ° 00 o.o [
o Smaatt wef G Dl L2 0 0le o Fet0 e S 0
0:0.: .): .‘.;“..:: 03.. . e\:\-;‘.‘.-.:. l’} o'.: \:.'... ’.}.:::.": ‘? ‘k’

NONBRO®OON
1 1 1 1 1

Correlation
eoNololeoNeoNel N

0 50 100 150 200 250 300
Possible values for key byte O

RCoal to mitigate the correlation timing
attacks

* Fixed sizes of subwarp

RCoal to mitigate the correlation timing
attacks

* Deterministic mapping of the thread elements to subwarps

RCoal: Random-Threaded Subwarp (RTS)

FSS: number of subwarps = 2

FSS+RTS: number of subwarps = 2

tid=0 tid=1 tid=2 tid=3 tid=0 tid=1 tid=2 tid=3
0x00 0x01 0x06 0x07 0x00 0x01 0Ox06 Ox07
21— Coalescing Unit - Sld:ol Sld:h-
0x00 0x01 0x02 0x03 0x00 0x01 0x02 0x03
0x00 0x02 0x03

0x04

0x05

0x06

0x07

RCoal: Random-Threaded Subwar

RTS

RSS: number of subwarps = 2

RSS+RTS: number of subwarps = 2

tid=0 tid=1 tid=2 tid=3 tid=2 tid=0 tid=1 || tid=3
0x00 0x01 0x06 0x08 0x06 0x00 | 0x01 | 0x08
Coalescing Unit Coalescing Unit

0x02 0x07

0x09

O0x0A 0x0B

Evaluation Set-up

OAES-128
aPlaintext with 32 lines

AGPGPU-SIM

® 15 SMs, 32 threads/warp, one subwarp per
coalescing unit (base case)

® GDDR5 Memory with 6 MCs, 16 DRAM-banks, 4
bank-groups/MC

a Enhanced Attack Algorithms
e Corresponding Attacks

Performance/Security Trade-off

Security
(Lower the better)

Correlation

N

=

o

il

(\

e B I L

1

@ Fsqy

ﬁlumbe? of Sulgwa rps16

32

EFSS+RTP ERSS [DIRSSHRTP

|

Offers Security/Performance Trade-off

(COWET (1€ DEUET)

Ti

c

Executio

1
0.5
0

Ll

AT Y

 —
1

i i
2 4 8 16

Number of Subwarps

32

B FSS OFSS+RTS ORSS ORSS+RTS

Conclusions

aWe discussed RCoal, a set of three novel defense
mechanisms

e To mitigate the correlation timing attacks

® Randomizes the memory access coalescing

® Scales with the plaintext size (analysis in paper)
® Theoretical analysis in the paper

1 RCoal offers a trade-off between security and
performance and improves security at a modest
performance loss.

Food for thought

1 Improving security at lower performance
cost

® Can we randomize logic at other parts of the memory
hierarchy?

- GPU Cache Management
- GPU Bandwidth Management (e.g., MSHRSs)
- GPU Prefetching and Memory Scheduling

® Can we leverage software-driven hints?

- Only randomize when “security-critical” sections of the code are
executing

- How do we identify “security-critical” sections? If yes, can we
automate the process?

References

aRCoal: Mitigating GPU Timing Attack via
Subwarp-based Randomized Coalescing
Techniques, HPCA'18

1A Complete Key Recovery Timing Attack
on a GPU, HPCA'16

aGrand Pwning Unit: Accelerating
Microarchitectural Attacks with the GPU,
Oakland’18

