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Course Outline

Q Lectures 1 and 2: Basics Concepts

® Basics of GPU Programming
® Basics of GPU Architecture

A Lecture 3: GPU Performance Bottlenecks

® Memory Bottlenecks
® Compute Bottlenecks
® Possible Software and Hardware Solutions

2 Lecture 4: GPU Security Concerns

® Timing channels
® Possible Software and Hardware Solutions



Era of Heterogeneous Architectures
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Discrete GPUs
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Discrete GPUs + Intel Processors

Max Turbo Compare
Product Name Status Launch Date # of Cores Frequency All None
Intel® Core™ i7-8809G Processor
with Radeon™ RX Vega M GH Announced Q1'18 4 4.20 GHz
graphics
Intel® Core™ i7-8709G Processor
with Radeon™ RX Vega M GH Announced Q118 4 4.10 GHz
graphics
Intel® Core™ i7-8706G Processor
with Radeon™ RX Vega M GL Announced Q118 4 4.10 GHz
graphics
Intel® Core™ i7-8705G Processor
with Radeon™ RX Vega M GL Announced Q118 4 4.10 GHz

graphics

Intel® Core™ i5-8305G Processor
with Radeon™ RX Vega M GL Announced Q118 4 3.80 GHz
graphics



Security Concerns

1GPUs may be accelerating applications that
are using user-sensitive data (e.g., genomics,
financial)

1GPUs may be accelerating cryptographic
applications (e.g., AES, RSA etc.) and
authentication algorithms on-behalf of CPUs

2 Given the popularity of GPUSs, it is imperative
to keep GPUs secure against a variety of
side-channel attacks and other security
vulnerabilities.



Security Attacks

aUser’s web activity on GPU can be

tracked by the malicious attacker

who Is co-located on the same card
[Oakland’14]

QAES private keys can be recovered

by correlation timing attacks
[HPCA'10]

QAccelerating attacks via GPUs
[Oakland’18]

o Glitch: Accelerating row hammer attacks



Correlation Timing Attacks

Server@GPU
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Memory Access Coalescing in GPUs
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Memory Access Coalescing in GPUs

Wavefront
tid = thread id

tid=0 | tid=1 | tid=2 | tid=3
0x00 0x04 0x07 0x09

434 33
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Memory Access Coalescing in GPUs

Wavefront
tid = thread id
, —————————————— ~
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AES implementation on GPU

2 Symmetric Encryption with 128-bit key and 10
rounds.

1 S-box implementation involves table lookups.

2 [Jiang/Fei/Kaeli, HPCA'16] demonstrated that the
last round is vulnerable.



Last Round of AES on GPU
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Last Round of AES on GPU
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Correlation Timing Attack on GPU

1 Goal of the attack: Recover the AES Key (byte-by-byte)

0 Last Round of AES is vulnerable

Memory acces
of thread tid

How an attacker can calculate the
number of coalesced accesses?




Attacker calculates the # of coalesced accesses
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Coalesced Accesses and Execution Time
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Finding the Correct Key Value

0 Attacker encrypts ‘N’ number of plaintexts over server
® Records Ciphertext and Execution time

Recorded
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How to mitigate Correlation Timing
Attacks on GPU?

Answer: By making it harder for the
attacker to correctly calculate the number
of coalesced accesses




RCoal to mitigate the correlation timing
attacks

» Targets the deterministic nature of the coalescing
mechanism

« Fixed number of subwarps (or subwavefronts)
* Fixed sizes of subwarp (or subwavefronts)

« Deterministic mapping of the thread elements to subwarps (or
subwavefronts)




RCoal: Fixed Sized Subwarp (FSS)

DEFAULT: number of subwarps =1 FSS: number of subwarps = 2
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FSS Security against Baseline Attack

e Correlation between the
number of coalesced
accesses and the execution
time drops

« Correct key byte is harder to
find

* Improved security
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FSS Performance

 Memory accesses increase with
number of subwarps

« Execution time increases with
number of subwarps

« Performance degrades as number -
of subwarp increase
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FSS against FSS attack

2 Attacker can figure out the number

of subwarps

Normalized Execution Time
|_I

=
w

=

=

=
o

N

—*— Execution Time
—e-- Total Memory Accesses |}

5 10 15 20 25 30
Number of Subwarps

= it N
.U'I o ul
Normalized Total Memory
Accesses

=
o



FSS against FSS attack

2 Attacker can figure out the number
of subwarps

1 Attacker can calculate per subwarp
accesses
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RCoal to mitigate the correlation timing
attacks

* Fixed sizes of subwarp




RCoal to mitigate the correlation timing
attacks

* Deterministic mapping of the thread elements to subwarps




RCoal: Random-Threaded Subwarp (RTS)

FSS: number of subwarps = 2

FSS+RTS: number of subwarps = 2

tid=0 tid=1 tid=2 tid=3 tid=0 tid=1 tid=2 tid=3
0x00 0x01 0x06 0x07 0x00 0x01 0Ox06 Ox07
21— Coalescing Unit - Sld:ol Sld:h-
0x00 0x01 0x02 0x03 0x00 0x01 0x02 0x03
0x00 0x02 0x03

0x04

0x05

0x06

0x07




RCoal: Random-Threaded Subwar

RTS

RSS: number of subwarps = 2

RSS+RTS: number of subwarps = 2

tid=0 tid=1 tid=2 tid=3 tid=2 tid=0 tid=1 || tid=3
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Evaluation Set-up

OAES-128
aPlaintext with 32 lines

AGPGPU-SIM

® 15 SMs, 32 threads/warp, one subwarp per
coalescing unit (base case)

® GDDR5 Memory with 6 MCs, 16 DRAM-banks, 4
bank-groups/MC

a Enhanced Attack Algorithms
e Corresponding Attacks



Performance/Security Trade-off
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Conclusions

aWe discussed RCoal, a set of three novel defense
mechanisms

e To mitigate the correlation timing attacks

® Randomizes the memory access coalescing

® Scales with the plaintext size (analysis in paper)
® Theoretical analysis in the paper

1 RCoal offers a trade-off between security and
performance and improves security at a modest
performance loss.



Food for thought

1 Improving security at lower performance
cost

® Can we randomize logic at other parts of the memory
hierarchy?

- GPU Cache Management
- GPU Bandwidth Management (e.g., MSHRSs)
- GPU Prefetching and Memory Scheduling

® Can we leverage software-driven hints?

- Only randomize when “security-critical” sections of the code are
executing

- How do we identify “security-critical” sections? If yes, can we
automate the process?
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