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Applications + Big Data
+ Graphics Processing Units (GPUs)

Abundant Data and Task-level Parallelism

High Throughput + Energy Efficiency

Credit/Source: AMD, NVIDIA, Wiki



A Decade of GPU Research

New Cache and Interconnect Design
(ISCA’'25, HPCA'21, PACT’20, PACT’'19)

Memory Hierarchy Optimizations
(DSN’19, ICS’19, HPCA'1 8a)

Improving Compute/Memory Utilization
(SIGMETRICS’23, ASPLOS’20, MICRO’18aq)

Simulation and Hardware-Software Co-design
(ISCA'25, MICRO’24, ISCA'23, MICRO’23)

Performance & _
Energy Efficiency & Reliability

Security, Privacy

Confidential Computing
(ISPASS’25)

Side-channel
Mitigation
(HPCA'20, HPCA'18b)

Fast and Accurate Reliability Analysis
(CLUSTER’24, SIGMETRICS’21, TC'21,
MICRO’18b)

Low-overhead Protection against Faults
(ISSRE'24, DSN’21, ICSE’21)



Yang Yang Mohammad Soniji Adwait Jog
(Ph.D. student) (Ph.D. student) (Faculty)

This presentation is based on the following |IEEE publication:

Yang Yang, Mohammad Soniji, Adwait Jog
Dissecting Performance Overheads of Confidential Computing on GPU-based Systems,

In the Proceedings of IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), Ghent, Belgium, May 2025 [© 2025 IEEE]

Preprint: https: //adwaitjog.github.io /docs /pdf /dissectcc-ispass25.pdf
Code: https://github.com /insight-cal-uva /hcc-ispass25-artifact
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Our Short/Long-term Goals

0 To advance the understanding of the performance
implications of GPU-based confidential computing

0 Help bridge any performance gap between CC=on
and CC=off

O ...and then do so under different scenarios (e.g., multi-
GPUs, CPU-GPU architectures)

0 Complement existing and new technological advances
in CC through academic research



Inspired by 2023 NVIDIA paper

0 ~40% drop in training performance

0 As we understand, the main issues are:
O Software Encryption at CPU | Bounce Buffers

0 Performance Overheads w/Unified Virtual Memory

M CC not enabled W CC enabled

BS=32 BS=64 BS=128 BS=256 BS=512 BS=1024

Fig.1 ResNetv1.5 training results™
*Creating the First Confidential GPUs, 2023 © ACM
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IAcademic Research at UVA

System Configuration

Configuration

Details

CPU
TME-MK
(013
Hypervisor
TDX Tools
GPU

2x 5th Gen Intel Xeon 6530 Gold @2.1GHz, 32 cores
Auto bypass enabled

Ubuntu 22.04.5 LTS (Linux 6.2.0, tdx patched)
QEMU 7.2.0 (tdx patched)

TDX 1.5 (tag 2023ww15)

NVIDIA H100 NVL, 94GB HBMS, PCle 5.0 x16
CUDA 12.4, Driver 550.127.05

Evaluation Setup:
* (CC-capable CPUs: support TDX
* NVIDIA H100 NVL system

Code available:
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I Transfer Bandwidth

)

~ 40 - =®= base-pin-h2d

oM == base-page-h2d

G ~@= cc-pin-h2d non-CC
~ cc-page-h2d

=

© 20 1

©

C | 3.03GB/s 2~ A2

© e —————— e e T e T Y T
(a8

rrrrrrrrrrrrrrrrrrrrrrrnr
6 7 8 91011121314151617 18 19 2021 22 23 24 252627 28 29 30 cc
Size (2' B)
Copy bandwidth

Observation 1.

v PCle bandwidth utilization in CC mode drops compared to non-CC.
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I Transfer Bandwidth
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Observation 1.

v PCle bandwidth utilization in CC mode drops compared to non-CC.

v' Bandwidth gap between pageable and pinned memory observed in non-CC mode

disappears in CC mode, suggesting that pinned memory relies on pageable
mechanisms in CC mode.
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I Crypto Throughput
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Crypto throughput

Observation 2.

v Our findings suggest that absence of dedicated hardware AES engines results in
low encryption throughput, even when using AES-NI acceleration.

v While alternative cryptographic algorithms may offer higher throughput, they may
come at the cost of weaker security guarantees.
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I Kernel Execution Time
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Normalized kernel execution time.

Observation 3.

» CC has minimal impact on non-UVM kernels (0.48% increase).

2 Execution is locked inside GPU, no interaction with CPU
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I Kernel Execution Time
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I Kernel Execution Time
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Kernel Execution Time
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Observation 3.

» CC has minimal impact on non-UVM kernels (0.48% increase).

» UVM in CC mode incurs an average slowdown of 188.87x across the GPGPU
benchmarks we studied.
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Time (us)

Memory Transfer Time

Pinned memory
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Time (Us) spent on memory copy.

Observation 4.

v" On average, copy operations in CC mode takes 5.80x longer compared to non-CC
mode for the GPGPU benchmarks we studied.

v" We find that pinned memory is converted to UVM encrypted paging in CC mode.
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CNN training throughput and training time for different batch sizes.

Observation 6.

v' With a batch size of 64 and CC on, throughput drops average 24%, and training time
increases average 31%.
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CNN training throughput and training time for different batch sizes.

Observation 7.

v' Increasing the batch size to 1024 significantly reduces overhead, with an average loss

in throughput of 7.3% and an increase in training time by 6.7%.
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All values are compared to the HuggingFace non-quantized CC-off baseline.
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Observation 8.

v CC-on incurs throughput overhead for both BF16 and AWQ, however, quantization

benefits remain positive.
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I Optimization: Kernel Fusion
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A right kernel fusion parameter is needed for better performance.
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I Performance Model

Kernel Queueing Time (KQT)
Kernel Launch Overhead (KLO)

%

Launch Queueing Time (LQT)
Launch Execution Time (KET)

P=T,..+X(KLO+LQT) + Z[(1-5; )(KET+KQT)] + T,,,...

Focus of this model

» Data movement (H2D, D2H, page migration)
» Encryption

» Kernel Execution
» Kernel Launch

» Queuing
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Additional Results

* Memory Management
* Kernel-to-Launch Ratio
* Overlapping

* CNNs

* LLMs

* Quantization

More details are in the paper!

Preprint: https: //adwaitjog.github.io /docs /pdf /dissectcc-ispass25.pdf
Code: https://github.com /insight-cal-uva /hcc-ispass25-artifact
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I Conclusions and Future Work

Our Goal: To make GPU-based Confidential Computing more
performance efficient and complement existing and new
technological advances.

Future Work:

* Possible Optimizations: (1) Multi-core Encryption (2) Pro-active Encryption +
Scheduling

* Performance Evaluation of CC for systems (when become available) with
* TDISP solutions w/o bounce buffers
* Multi-GPUs and CPU-GPUs Architectures

* Performance Models that will consider reliability issues (e.g., bit flips) and
Post-Quantum Era (e.qg., periodic key updates)

Happy to chat! Adwait Jog (ajog@virginia.edu)



