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Performance &
Energy Efficiency

Security, Privacy 
& Reliability

A Decade of GPU Research

New Cache and Interconnect Design 
(ISCA’25, HPCA’21, PACT’20, PACT’19)

Memory Hierarchy Optimizations 
(DSN’19, ICS’19, HPCA’18a)

Improving Compute/Memory Utilization
(SIGMETRICS’23, ASPLOS’20, MICRO’18a)

Side-channel 
Mitigation 

(HPCA’20, HPCA’18b)

Fast and Accurate Reliability Analysis 
(CLUSTER’24, SIGMETRICS’21, TC’21, 

MICRO’18b)

Low-overhead Protection against Faults  
(ISSRE’24, DSN’21, ICSE’21)

Simulation and Hardware-Software Co-design
(ISCA’25, MICRO’24, ISCA’23, MICRO’23)

Confidential Computing 
(ISPASS’25)



This presentation is based on the following IEEE publication:

Yang Yang, Mohammad Sonji, Adwait Jog
Dissecting Performance Overheads of Confidential Computing on GPU-based Systems,
In the Proceedings of IEEE International Symposium on Performance Analysis of Systems 
and Software (ISPASS), Ghent, Belgium, May 2025 [© 2025 IEEE]

Preprint: https://adwaitjog.github.io/docs/pdf/dissectcc-ispass25.pdf
Code: https://github.com/insight-cal-uva/hcc-ispass25-artifact

Yang Yang
(Ph.D. student)

Mohammad Sonji
  (Ph.D. student)

Adwait Jog
  (Faculty)

https://adwaitjog.github.io/docs/pdf/dissectcc-ispass25.pdf
https://github.com/insight-cal-uva/hcc-ispass25-artifact
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GPU-based	CC



Our	Short/Long-term	Goals

¨ To advance the understanding of the performance 
implications of GPU-based confidential computing

¨ Help bridge any performance gap between CC=on 
and CC=off
¤ …and then do so under different scenarios (e.g., multi-

GPUs, CPU-GPU architectures)

¨ Complement existing and new technological advances 
in CC through academic research



Inspired	by	2023	NVIDIA	paper
¨ ~40% drop in training performance
¨ As we understand, the main issues are:

¤ Software Encryption at CPU | Bounce Buffers
¤ Performance Overheads w/Unified Virtual Memory

*Creating the First Confidential GPUs, 2023 © ACM

Fig.1 ResNetv1.5 training results*
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Academic	Research	at	UVA

https://github.com/insight-cal-uva/hcc-ispass25-artifact 
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Evaluation	Setup:
• CC-capable	CPUs:	support	TDX
• NVIDIA	H100	NVL	system
• Code	available:

System Configuration

Configuration Details

CPU 2× 5th Gen Intel Xeon 6530 Gold @2.1GHz, 32 cores

TME-MK Auto bypass enabled

OS Ubuntu 22.04.5 LTS (Linux 6.2.0, tdx patched)

Hypervisor QEMU 7.2.0 (tdx patched)

TDX Tools TDX 1.5 (tag 2023ww15)

GPU NVIDIA H100 NVL, 94GB HBM3, PCIe 5.0 ×16

CUDA 12.4, Driver 550.127.05

© 2025 IEEE

https://github.com/insight-cal-uva/hcc-ispass25-artifact


Transfer	Bandwidth

Copy bandwidth

non-CC

Observation 1.

ü PCIe	bandwidth	utilization	in	CC	mode	drops	compared	to	non-CC.

9

© 2025 IEEE
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Transfer	Bandwidth

Non-CC

Observation 1.

ü PCIe	bandwidth	utilization	in	CC	mode	drops	compared	to	non-CC.

ü Bandwidth	gap	between	pageable	and	pinned	memory	observed	in	non-CC	mode	
disappears	 in	 CC	 mode,	 suggesting	 that	 pinned	 memory	 relies	 on	 pageable	
mechanisms	in	CC	mode.	
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pinned

pageable

© 2025 IEEE

Copy bandwidth

CC



Crypto	Throughput

Crypto throughput

Observation 2.

ü Our	findings	suggest	that	absence	of	dedicated	hardware	AES	engines	results	in	
low	encryption	throughput,	even	when	using	AES-NI	acceleration.

ü While	alternative	cryptographic	algorithms	may	offer	higher	throughput,	they	may	
come	at	the	cost	of	weaker	security	guarantees.	

8.9GB/s
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© 2025 IEEE



Kernel	Execution	Time

Normalized kernel execution time.

Observation 3.

Ø CC	has	minimal	impact	on	non-UVM	kernels	(0.48%	increase).	
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Non-CC

? Execution	is	locked	inside	GPU,	no	interaction	with	CPU

© 2025 IEEE



Kernel	Execution	Time

Normalized kernel execution time.
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Non-CC

5.29× 

Source:	NVIDIA

Single	Address	Space Frequent	CPU-GPU	interaction!

© 2025 IEEE



Kernel	Execution	Time

Normalized kernel execution time.
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Non-CC

5.29× 

Source:	NVIDIA

Single	Address	Space

ENC/DEC

With	CC	ON

Frequent	CPU-GPU	interaction!

© 2025 IEEE



Kernel	Execution	Time

Normalized kernel execution time.

Observation 3.

Ø CC	has	minimal	impact	on	non-UVM	kernels	(0.48%	increase).

Ø UVM	 in	 CC	 mode	 incurs	 an	 average	 slowdown	 of	 188.87×	 across	 the	 GPGPU	
benchmarks	we	studied.	
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Non-CC

164,030.65×

5.29× 188.87× 

© 2025 IEEE



Memory	Transfer	Time

Time (𝜇s) spent on memory copy.

Observation 4.

ü On	average,	copy	operations	in	CC	mode	takes	5.80×	longer	compared	to	non-CC	
mode	for	the	GPGPU	benchmarks	we	studied.

ü We	find	that	pinned	memory	is	converted	to	UVM	encrypted	paging	in	CC	mode.

Pinned memory
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© 2025 IEEE



CNNs

CNN training throughput and training time for different batch sizes. 
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Observation 6.

ü With a batch size of 64 and CC on, throughput drops average 24%, and training time 
increases average 31%.

© 2025 IEEE



CNN training throughput and training time for different batch sizes. 

18

Observation 7.

ü Increasing the batch size to 1024 significantly reduces overhead, with an average loss 
in throughput of 7.3% and an increase in training time by 6.7%.

© 2025 IEEE

CNNs



LLMs
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Observation 8.

ü CC-on	incurs	throughput	overhead	for	both	BF16	and	AWQ,	however,	quantization	
benefits	remain	positive.	

Throughput (Tokens/s) speedup of the vLLM serving framework for the 
Llama-3-8B model. 

All values are compared to the HuggingFace non-quantized CC-off baseline. 
© 2025 IEEE



Optimization:	Kernel	Fusion
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Launch	a	new	kernel	
shows	high	KLO.

First	few	launch
shows	high	KLO.

CC-ONCC-OFF

K1 K2 K1 K2 K1

A	right	kernel	fusion	parameter	is	needed	for	better	performance.

Fuse	128	->	1

© 2025 IEEE



Performance	Model

Focus of this model
Ø Data	movement	(H2D,	D2H,	page	migration)
Ø Encryption
Ø Kernel	Execution
Ø Kernel	Launch
Ø Queuing
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P	=	Tmem	+	Σ(KLO+LQT)	+	Σ[(1-βi	)(KET+KQT)]	+	Tother

Kernel Queueing Time (KQT) Launch Queueing Time (LQT)
Kernel Launch Overhead (KLO) Launch Execution Time (KET)



Additional	Results
• Memory	Management
• Kernel-to-Launch	Ratio	
• Overlapping
• CNNs
• LLMs
• Quantization
• …

More	details	are	in	the	paper!
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Preprint: https://adwaitjog.github.io/docs/pdf/dissectcc-ispass25.pdf
Code: https://github.com/insight-cal-uva/hcc-ispass25-artifact

https://adwaitjog.github.io/docs/pdf/dissectcc-ispass25.pdf
https://github.com/insight-cal-uva/hcc-ispass25-artifact


Our Goal: To make GPU-based Confidential Computing more 
performance efficient and complement existing and new 
technological advances.

Future Work:
• Possible Optimizations: (1) Multi-core Encryption (2) Pro-active Encryption + 

Scheduling

• Performance Evaluation of CC for systems (when become available) with
• TDISP solutions w/o bounce buffers

• Multi-GPUs and CPU-GPUs Architectures
• Performance Models that will consider reliability issues (e.g., bit flips) and 

Post-Quantum Era (e.g., periodic key updates)

Conclusions	and	Future	Work

Happy to chat!  Adwait Jog (ajog@virginia.edu)


