### Analyzing and Addressing Performance Overheads of Confidential Computing on GPU-based Systems

CC Summit 2025 | June 18, 2025

Adwait Jog Associate Professor & Anita Jones Faculty Fellow Computer Science Department University of Virginia Contact: <u>ajog@viriginia.edu</u>



### **Applications + Big Data** + Graphics Processing Units (GPUs)





### High Throughput + Energy Efficiency

### A Decade of GPU Research

Performance & Energy Efficiency

Security, Privacy & Reliability

New Cache and Interconnect Design (ISCA'25, HPCA'21, PACT'20, PACT'19)

Memory Hierarchy Optimizations (DSN'19, ICS'19, HPCA'18a)

Improving Compute/Memory Utilization (SIGMETRICS'23, ASPLOS'20, MICRO'18a)

Simulation and Hardware-Software Co-design (ISCA'25, MICRO'24, ISCA'23, MICRO'23) **Confidential Computing** (ISPASS'25)

Side-channel Mitigation (HPCA'20, HPCA'18b)

#### Fast and Accurate Reliability Analysis

(CLUSTER'24, SIGMETRICS'21, TC'21, MICRO'18b)

Low-overhead Protection against Faults (ISSRE'24, DSN'21, ICSE'21)







Yang Yang (Ph.D. student)

Mohammad Sonji (Ph.D. student)

Adwait Jog (Faculty)

### This presentation is based on the following IEEE publication:

Yang Yang, Mohammad Sonji, Adwait Jog Dissecting Performance Overheads of Confidential Computing on GPU-based Systems, In the Proceedings of IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Ghent, Belgium, May 2025 [© 2025 IEEE]

Preprint: <u>https://adwaitjog.github.io/docs/pdf/dissectcc-ispass25.pdf</u> Code: <u>https://github.com/insight-cal-uva/hcc-ispass25-artifact</u>

### **Trusted Execution Environments**



## **Our Short/Long-term Goals**

To advance the understanding of the performance implications of GPU-based confidential computing

- Help bridge any performance gap between CC=on and CC=off
  - ...and then do so under different scenarios (e.g., multi-GPUs, CPU-GPU architectures)
- Complement existing and new technological advances in CC through academic research

### **Inspired by 2023 NVIDIA paper**

- □ ~40% drop in training performance
- □ As we understand, the main issues are:
  - Software Encryption at CPU | Bounce Buffers
  - Performance Overheads w/Unified Virtual Memory



Fig.1 ResNetv1.5 training results\*

\*Creating the First Confidential GPUs, 2023 © ACM

# **Academic Research at UVA**

#### System Configuration

| Configuration | Details                                                                  |
|---------------|--------------------------------------------------------------------------|
| CPU           | 2× 5th Gen Intel Xeon 6530 Gold @2.1GHz, 32 cores                        |
| TME-MK        | Auto bypass enabled                                                      |
| OS            | Ubuntu 22.04.5 LTS (Linux 6.2.0, tdx patched)                            |
| Hypervisor    | QEMU 7.2.0 (tdx patched)                                                 |
| TDX Tools     | TDX 1.5 (tag 2023ww15)                                                   |
| GPU           | NVIDIA H100 NVL, 94GB HBM3, PCIe 5.0 ×16<br>CUDA 12.4, Driver 550.127.05 |

### **Evaluation Setup:**

- CC-capable CPUs: support TDX
- NVIDIA H100 NVL system
- Code available: <a href="https://github.com/insight-cal-uva/hcc-ispass25-artifact">https://github.com/insight-cal-uva/hcc-ispass25-artifact</a>

### **Transfer Bandwidth**



#### **Observation 1.**

✓ PCIe bandwidth utilization in CC mode **drops** compared to non-CC.

### **Transfer Bandwidth**



#### **Observation 1.**

- ✓ PCIe bandwidth utilization in CC mode drops compared to non-CC.
- ✓ Bandwidth gap between pageable and pinned memory observed in non-CC mode disappears in CC mode, suggesting that pinned memory relies on pageable mechanisms in CC mode.

# **Crypto Throughput**



#### **Observation 2.**

- ✓ Our findings suggest that absence of **dedicated hardware AES engines** results in low encryption throughput, even when using **AES-NI** acceleration.
- ✓ While *alternative cryptographic algorithms* may offer higher throughput, they may come at the cost of weaker security guarantees.

### **Kernel Execution Time**



Normalized kernel execution time.

**Observation 3.** 

CC has minimal impact on non-UVM kernels (0.48% increase).

2 Execution is locked inside GPU, no interaction with CPU

### **Kernel Execution Time**



Normalized kernel execution time.







Source: NVIDIA

### **Kernel Execution Time**



#### Normalized kernel execution time.



Source: NVIDIA

#### **Frequent CPU-GPU interaction!**



With CC ON

### **Kernel Execution Time**



Normalized kernel execution time.

#### **Observation 3.**

- CC has minimal impact on non-UVM kernels (0.48% increase).
- **UVM** in CC mode incurs an average slowdown of 188.87× across the GPGPU benchmarks we studied.

## **Memory Transfer Time**



Time ( $\mu$ s) spent on memory copy.

#### **Observation 4.**

- ✓ On average, copy operations in CC mode takes 5.80× longer compared to non-CC mode for the GPGPU benchmarks we studied.
- ✓ We find that pinned memory is converted to UVM encrypted paging in CC mode.







CNN training throughput and training time for different batch sizes.

#### **Observation 6.**

✓ With a batch size of 64 and CC on, throughput drops average 24%, and training time increases average 31%.



#### **Observation 7.**

✓ Increasing the batch size to 1024 significantly reduces overhead, with an average loss in throughput of 7.3% and an increase in training time by 6.7%.

All values are compared to the <u>HuggingFace</u> non-quantized CC-off baseline.



Throughput (Tokens/s) speedup of the vLLM serving framework for the Llama-3-8B model.

#### **Observation 8.**

✓ CC-on incurs throughput overhead for both BF16 and AWQ, however, quantization benefits remain positive.

### **Optimization: Kernel Fusion**



A right kernel fusion parameter is needed for better performance.

### **Performance Model**



### $P = T_{\text{mem}} + \Sigma(\text{KLO} + LQT) + \Sigma[(1 - \beta_i)(\text{KET} + KQT)] + T_{\text{other}}$

### Focus of this model

- Data movement (H2D, D2H, page migration)
- Encryption
- Kernel Execution
- Kernel Launch
- Queuing

## **Additional Results**

- Memory Management
- Kernel-to-Launch Ratio
- Overlapping
- CNNs
- LLMs
- Quantization
- •

### More details are in the paper!

Preprint: <u>https://adwaitjog.github.io/docs/pdf/dissectcc-ispass25.pdf</u> Code: <u>https://github.com/insight-cal-uva/hcc-ispass25-artifact</u>

# **Conclusions and Future Work**

Our Goal: To make GPU-based Confidential Computing more performance efficient and complement existing and new technological advances.

**Future Work:** 

- Possible Optimizations: (1) Multi-core Encryption (2) Pro-active Encryption + Scheduling
- Performance Evaluation of CC for systems (when become available) with
  - TDISP solutions w/o bounce buffers
  - Multi-GPUs and CPU-GPUs Architectures
- Performance Models that will consider reliability issues (e.g., bit flips) and Post-Quantum Era (e.g., periodic key updates)

### Happy to chat! Adwait Jog (ajog@virginia.edu)