
Trading Cache Hit Rate for Memory Performance

Wei Ding, Mahmut Kandemir, Diana Guttman, Adwait Jog, Chita R. Das, Praveen Yedlapalli
Department of Computer Science and Engineering

The Pennsylvania State University
University Park, Pennsylvania, USA

{wzd109, kandemir, drg217, adwait, das, praveen}@cse.psu.edu

ABSTRACT
Most of the prior compiler based data locality optimization
works target exclusively cache locality optimization, and
row-buffer locality in DRAM banks received much less atten-
tion. In particular, to the best of our knowledge, there is no
single compiler based approach that can improve row-buffer
locality in executing irregular applications. This presents a
critical problem considering the fact that executing irregu-
lar applications in a power and performance efficient man-
ner will be a key requirement to extract maximum bene-
fits from emerging multicore machines and exascale systems.
Motivated by these observations, this paper makes the fol-
lowing contributions. First, it presents a compiler-runtime
cooperative data layout optimization approach that takes
as input an irregular program that has already been opti-
mized for cache locality and generates an output code with
the same cache performance but better row-buffer locality
(lower number of row-buffer misses). Second, it discusses a
more aggressive strategy that sacrifices some cache perfor-
mance in order to further improve row-buffer performance
(i.e., it trades cache performance for memory system per-
formance). The ultimate goal of this strategy is to find the
right tradeoff point between cache performance and row-
buffer performance so that the overall application perfor-
mance is improved. Third, the paper performs a detailed
evaluation of these two approaches using both an AMD
Opteron based multicore system and a multicore simulator.
The experimental results, collected using five real-world ir-
regular applications, show that (i) conventional cache opti-
mizations do not improve row-buffer locality significantly;
(ii) our first approach achieves about 9.8% execution time
improvement by keeping the number of cache misses the
same as a cache-optimized code but reducing the number
of row-buffer misses; and (iii) our second approach achieves
even higher execution time improvements (13.8% on aver-
age) by sacrificing cache performance for additional memory
performance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PACT’14, August 24–27, 2014, Edmonton, AB, Canada.
Copyright 2014 ACM 978-1-4503-2809-8/14/08 ...$15.00.
http://dx.doi.org/10.1145/2628071.2628082.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers, Optimization

Keywords
Data locality; compiler; irregular application; cache; row
buffer

1. INTRODUCTION
Many data intensive applications are irregular in their

data access patterns, inter-thread communication, control
flow and storage accesses. Unfortunately, compared to the
vast literature we have for dense computations, irregular
computations received much less attention from academia
and industry. This is partly because optimizing irregular ap-
plications is much more challenging than optimizing dense
computations as their behavior is significantly more complex
and does not lend itself well to static analysis. This presents
a critical problem considering the fact that executing irregu-
lar applications in a power and performance efficient manner
will be a key requirement to extract maximum benefits from
emerging multicore machines and future exascale systems.

The most active research areas in the context of irreg-
ular applications have been parallelism optimization (i.e.,
minimizing inter-thread communication [22, 31, 11]) and
data locality optimization [13, 15]. It is interesting to note
that all prior data locality optimizations targeting irregular
programs considered exclusively cache locality. However, in
modern multicore systems, cache locality is not the only type
of locality that matters. For example, current commercial
multicores do not only move memory controller on-chip but a
majority of them also support multiple memory controllers.
Each of these controllers orchestrates data flow into/from
multiple memory banks. Row-buffer is a buffer in front of
a bank (in DRAM) that holds the most recently-accessed
memory row. To keep costs low, the buffering circuitry in
DRAM devices is amortized among large rows of cells, re-
sulting in the employment of large (2KB-8KB) buffers in
current systems.

While one may think of a row-buffer as another level in
the cache hierarchy, it requires special attention because of
the following reasons. First, the row-buffer is a single buffer
whose “entire contents” are replaced in a row-buffer miss.
Therefore, even one intervening access to another row in the
same bank can destroy the whole row-buffer locality. Sec-
ond, a row-buffer serves only for memory accesses issued to
the bank it is attached to. This needs to be kept in mind

!"##$

!%&#$'()*$

+,-.$
%/0$+1234$

555$

6-7'()*$#38/49$:/-;4/<<34$

#38/49$+1=$

Figure 1: High-level organization of main memory
(DRAM).

when optimizing for it. Third, an application that has al-
ready been optimized for cache locality may not necessarily
exhibit good row buffer locality, and similarly, optimizing ex-
clusively for row-buffer locality may not necessarily improve
cache behavior. We are not aware of any prior compiler work
that optimizes row-buffer locality of irregular applications.
Motivated by this, we make the following contributions in
this paper:
• We present a compiler-runtime cooperative data layout

optimization approach that takes as input an irregular pro-
gram that has already been optimized for cache locality and
generates an output code with the same cache performance
but better row-buffer locality (lower number of row-buffer
misses).
• We present an alternate strategy which sacrifices some

cache performance in order to further improve row-buffer
performance (i.e., it trades cache performance for memory
system performance). By carefully determining the amount
of cache locality to sacrifice, this strategy improves the over-
all application performance.
• We perform a detailed, inspector/executor paradigm-

based evaluation of these approaches using both an AMD
Opteron based multicore system and a multicore simulator.
The experimental results, collected using five real-world ir-
regular applications, show that (i) conventional cache opti-
mizations do not improve row-buffer locality significantly;
(ii) our first approach achieves about 9.8% execution time
improvement by keeping the number of cache misses the
same as a cache-optimized code but reducing the number of
row-buffer misses; (iii) our second approach achieves even
higher execution time improvements (13.8% on average) by
sacrificing cache performance for additional memory perfor-
mance; We also provide experimental evaluation under dif-
ferent values of important architectural parameters such as
the number of memory controllers, number of cores, row-
buffer size and last level cache capacity, as well as different
memory request scheduling algorithms.

2. BACKGROUND

2.1 On-Chip Caches
The cache is a small memory that stores data from fre-

quently used main memory locations. Data is stored in
chunks of several words at contiguous addresses called cache
lines (or cache blocks). When new data is returned from a
request and needs to be stored in the cache, some data al-

ready present in the cache may have to be evicted to make
room. In a k-way set-associative cache, a memory block can
be mapped to any of k different cache blocks. The cache
replacement policy determines which of the k lines will be
evicted and replaced. The state-of-the-art on-chip caches
employ various policies such as Random Replacement [16],
LRU (Least Recently Used) [16], SLRU [21], Round-robin
[3], and PLRU [2]. Each of these policies has its own ad-
vantages and disadvantages. Further, except Random Re-
placement, these policies determine the cache block/line to
be replaced by looking at the past references history. LRU is
the most commonly used policy where the next cache block
to be evicted is the one that has been least recently used.
It requires several bits to track when each cache block is
accessed. The number of these bits increases as the set-
associativity increases. In this work, we focus on the on-chip
caches that employ the LRU-like cache replacement policies.

Since accesses to words not currently present in the cache,
called cache misses, take much longer to service than cache
hits (where the data is present), varies approaches are pro-
posed to try to minimize the number of cache misses by
keeping useful data in the cache as much as possible. One
way to achieve this is called data reordering or layout re-
organization, which changes the positions of data elements
stored in the memory. This technique can be used to put
the data that will be used at around the same time on the
same cache line; that way, most accesses to that data will
hit in the cache.

2.2 Row-Buffers
The main memory consists of several DRAM chips logi-

cally organized into banks that are one row wide (which is
usually equal to the page size). Each memory bank is ac-
cessed one row at a time, and the entire row must be copied
into a small buffer called the row-buffer. In a DRAM, upon
a read or write request, the data content of the requested
row is read by sense ampliers and latched in the row-buffer.
Many banks can be accessed in parallel since they each have
their own row-buffer. If the memory uses an open page pol-
icy, the same row is kept in the row buffer after the initial
request, allowing multiple accesses to the same row. The
data in the row-buffer only changes if a different row is re-
quested. Memory accesses that find their row already in
the row buffer are called “row buffer hits” and can be sig-
nificantly faster than “row buffer misses”, which must wait
for the row to be copied into the buffer. A row buffer miss
can be even slower in the case of a conflict (when another
row is already in the row buffer) because the previous row
must be copied back before the new row can be brought
in. One important factor affecting the row buffer hit rate is
the hardware (memory request) scheduling policy [19] used
by the memory controller to send requests into the channel.
Row-buffer hit rates can also be affected by the data lay-
out, in a similar way to caches. Row-buffer locality refers to
the reuse of a memory row while its contents are in the row
buffer. If two cache lines are frequently accessed together,
their row-buffer locality will be better if they are placed in
the same memory row (in order to improve row-buffer lo-
cality). Otherwise, they will experience row buffer conflicts.
As compared to the vast literature on caches, there are only
a few prior works [34, 14] on improving row-buffer locality
from the compiler perspective, and none of them handles
applications with irregular data accesses.

Real X(num_nodes), Y(num_edges);

Integer IA(num_edges, 2);

for (t = 1, t < T, t++) {

 for (i = 0, i < num_edges; i++) {

 X(IA(i, 1)) = X(IA(i, 1)) + Y(i);

 X(IA(i, 2)) = X(IA(i, 2)) - Y(i);

 }

}

Figure 2: Irregular code example.

2.3 Irregular Applications
In this work, our focus is on irregular application pro-

grams, in which a large fraction of data access has the form
of X(IA(f(· · ·))), where X and IA are two arrays called
host array and index array [13], respectively, and f(· · ·) is
a function of enclosing loop indices and loop-independent
constants. In these applications, the value of IA(f(· · ·)) is
typically not known until run-time. Figure 2 illustrates the
code structure of a sample irregular application. In this ex-
ample, IA(num edges, 2) lists the two nodes associated with
each edge in a graph. The loop iterates over the edges of
the graph and in each iteration, the values related to the two
nodes of each edge will be updated accordingly. Traversing
this index array will give us a sequence of data elements
that will be accessed by the program. Due to the unknown
value of index array IA at compile time, the accesses to the
host array X are irregular, which makes the irregular code
difficult to utilize caches efficiently.

There exist a number of work on improving the perfor-
mance of irregular applications. One category is called data
reordering [13, 15], which can be performed directly by rear-
ranging elements in the host arrays. These work include, but
not limited to, consecutive packing (CPACK) [13], Reverse
Cuthill-McKee (RCM) [24], space filling curves (SFC) [25],
recursive coordinate bisection (RCB) [9], multilevel graph
partitioning (METIS) [18], and hierarchical clustering algo-
rithm (GPART) [15]. The basic strategy adopted by these
work is to relocate the elements such that the elements that
tend to be accessed together in a short period of time become
close in memory space. To implement this, the inspector-
executor module [12, 13, 15] is often used. The inspec-
tor preprocesses the memory/data accesses, e.g., obtain the
data access sequence of the program by traversing the index
array; and the executor simply performs the optimization
based on the information obtained by the inspector. There
also exist several works on automatically generating inspec-
tors and executors [15]. Figure 3 shows the structure of
the inspector module used to implement the data reorder-
ing, where Trans(X,Y) is the inspector inserted after each
update of the index array. For different data reordering al-
gorithms, the differences are mainly in Trans(X,Y).

3. MOTIVATION
To our knowledge, all prior work that target irregular/sparse

applications exclusively focus on improving cache locality,
and they do not do anything special for row-buffer locality.
To put cache locality and row-buffer locality into perspec-
tive, let us consider typical miss latencies of the correspond-
ing components. A last level cache (L3) hit in our target
AMD based architecture takes 28 clock cycles. A last level

/* Executor*/

Real X(num_nodes), Y(num_edges);

Real X’(num_nodes), Y’(num_edges);

Integer IA(num_edges, 2);

for (t = 1, t < T, t++) {

 /*If it is time to update the

 interaction list */

 X’, Y’ = Trans(X, Y);

 for (i = 0, i < num_edges; i++) {

 X’(IA(i, 1)) = X’(IA(i, 1)) + Y’(i);

 X’(IA(i, 2)) = X’(IA(i, 2)) - Y’(i);

 }

}

/* Inspector*/

Trans(X, Y)

 for (i = 0, i < num_edges; i++) {

 /*data reordering

 algorithms*/

 }

return (X’, Y’)

Figure 3: Using the inspector module module for data re-
ordering.

layout (a)

layout (b)

layout (c)

x y u v

row size

x y u v

x y u v

Figure 4: Motivational example. The grey boxes represent
the data elements to which the accesses incur last level cache
misses. Note that these figures show the layouts (not ac-
cesses), and each element shown here may be accessed mul-
tiple times during execution.

cache miss that hits in the row-buffer takes about 90 clock
cycles, whereas a row-buffer miss costs more than 350 cy-
cles. Therefore, eliminating one row-buffer miss is expected
to bring much more benefits than eliminating a cache miss
that would hit in the row buffer. That is to say, the overall
performance of an application is not dictated only by the
cache performance, but is also influenced by the row-buffer
locality.

Figure 4 illustrates a motivational example. It contains
three layouts for the same set of data elements. For sim-
plicity, let us assume that, in the original layout (a), all the
accesses to the highlighted data elements (grey boxes), x, y,
u and v, incur last level cache misses.1 In this layout, x and
y are mapped to different rows. Therefore, if an access to
x and an access to y incur successive cache misses (x is ac-
cessed first), then the access to y will also incur a row-buffer
miss. In contrast, if we can generate a layout such that x
and y are mapped to the same row2, as shown in layout (b),
then the access to y will incur a row-buffer hit. Further, if

1Unless specified, in the rest of our discussion, when we say
“cache misses”, we mean the “last level cache misses”.
2When we say “placing two data elements into the same
row”, we mean “placing these two data elements into the
memory blocks that will be mapped to the same row”. Since
the row size is usually equal to a page size, from the compiler
perspective, this can be achieved by ensuring these two data
elements have the same virtual page address. That is to say,
we only care whether two data elements reside in the same
page or not. As a result, we do not need to take the virtual-
to-physical mapping into account.

this layout does not cause any additional cache misses, then
the memory access latencies as well as the overall applica-
tion execution time can be shorten. The layout generated
in this way is called conservative layout. Compared to the
original layout, the conservative layout has the same number
of cache misses but fewer row-buffer misses.

Next, let us assume that there exist many accesses to u
and v that incur successive cache misses (similar to the case
of x and y in the above example), but layout (b) does not
place u and v into the same row because doing so will cause
additional cache misses. Can we take advantage of this data
access pattern to generate a better layout than (b)? Re-
call that, normally the latency of a row-buffer miss is much
higher than the latency of a cache miss. If we can generate
a layout such that the overall increased cache miss latency
is less than the overall reduced row-buffer miss latency, then
the resulting memory access latency will be less than the
original one. In other words, we sacrifice some cache perfor-
mance in order to further improve row-buffer performance.
For example, when we change the layout from (b) to (c),
if only few accesses to v (which originally incur cache hits)
turn into cache misses, and many accesses to v turn to row
buffer hits (due to placing u and v into the same row), then
with this new layout, the overall memory access latency can
still be reduced. A layout generated in this way is called the
fine-grain layout in this paper. Compared to the original
layout, the fine-grain layout usually has more cache misses
but fewer row-buffer misses.

The main contribution of this work includes two data lay-
out reorganization (data reordering) approaches that derive
conservative layout and fine-grain layout for irregular ap-
plications. The input layout of our framework could be the
original layout or a layout obtained from prior data reuse op-
timizations that target minimizing cache misses (e.g., [15]).
In other words, our starting/original layout can be one that
has already been optimized for cache performance.

4. PRELIMINARIES
To simplify our explanation, we introduce the following

notation:

• Seq: the sequence of data elements obtained by travers-
ing the index array (based on the innermost loop(s)).

• αx: the access to a particular data element x in Seq.

• time(αx): the “logical time stamp” of αx in Seq.

• βx: the memory block where data element x resides.

• α−x : the “most recent access” to βx before αx.

• Caches(βx): the set of cache blocks to which βx can
be mapped in a k-way set-associative cache.

Definition 4.1. Block Distance. Given Caches(βx) =
Caches(βy), the block distance between αx and αy, denoted
as ∆(αy, αx),3 is the number of “distinct” memory blocks
that are mapped to Caches(βx) and accessed during the time
period between time(αx) and time(αy).

3Note that, here we do not distinguish the appearance order
of αx and αy in ∆(αy, αx), i.e., ∆(αy, αx) = ∆(αx, αy).

y u
data

accesses
w x

βx βu βw βx
block

accesses

∆(αy, αx) = 3

(a) Block distance.

Figure 5: An example that illustrates the block distance
concept.

As a special case, when αy = α−x , ∆(α−x , αx) is referred to
as the block reuse distance of ax. If βx = βy and αx is the
first access (or αy is the last access) to the memory block
βx in Seq, we define ∆(αy, αx) as ∞. Figure 5 gives an
example of the block distance of αx, where x and y reside in
the same memory block (βx = βy), and the three memory
blocks, βx, βu, and βw, are mapped to the same set of caches
(Caches(βx) = Caches(βu) = Caches(βw)).

The block distance concept can be used to determine whether
a memory block can be reused or not in the cache. Given a
k-way set associative cache, if ∆(αy, αx) ≤ k and βx = βy,
then αy ensures that βx is in the cache at time time(αx),
and consequently, αx will incur a cache “hit”. Note that this
conclusion holds true for most LRU-like cache replacement
policies, as long as the victim cache block is selected among
the k different cache blocks.

5. CONSERVATIVE LAYOUT

Definition 5.1. Locality Set. A set of data elements,
denoted by Ω, forms a locality set, if and only if:

1. ∀ x ∈ Ω, ∀ y ∈ Ω, βx = βy

2. ∀ x ∈ Ω, ∃ y ∈ Ω, ∃ αx, ∃ αy: ∆(αy, αx) ≤ k

3. ∀ x /∈ Ω, ∀ y ∈ Ω, ∀ αx, ∀ αy: ∆(αy, αx) > k

Lemma 5.2. Non-increased Cache Misses: Moving Ω
from βx to βy will not increase the total number of cache
misses in Seq if Caches(βy) = Caches(βx).

Proof. Let αi denote an arbitrary access in Seq that
originally incurs a cache hit, i.e., ∆(α−i , αi) ≤ k. Clearly,
if Caches(βi) 6= Caches(βx), then performing the above
movement will not change ∆(α−i , αi). If Caches(βi) = Caches(βx),
then after movingG from βx to βy, none of the distinct mem-
ory blocks in Caches(βx) that are accessed during time pe-
riod [time(α−i), time(αi)] would change except that βx will
be replaced by βy. Therefore, in this case, ∆(α−i , αi) will
not be increased, either. As a result, for any access in Seq
that originally incurs a cache hit, the stated move operation
will not change its block reuse distance, i.e., it will still incur
a cache hit after this movement.

To generate the conservative layout, the key is to ensure
that the total number of cache misses is not increased. We
found that, based on Lemma 5.2, this can be achieved by
performing the data reordering at a locality set granularity.
Specifically, our scheme consists of the following three steps,
and the pseudo-code is given in Algorithm 1.

Algorithm 1 Conservative Layout Generation.

1: /*Identifying locality sets*/
2: for every access αx in Seq do
3: if listCaches(βx) is not full or (∀αy ∈ listCaches(βx) :

βx 6= βy) then
4: place αx into listCaches(βx)

5: else if ∃αy ∈ listCaches(βx) : βx = βy then
6: replace αy with αx in listCaches(βx)

7: place x and y into the same locality set
8: end if
9: end for

10: /*Constructing the interference graph*/
11: for every access αx in Seq do
12: if ∆(α−x , αx) > k ∧ y == ∅ then
13: y ← x
14: else if ∆(α−x , αx) > k ∧ y 6= ∅ ∧ bank(x) = bank(y)

then
15: /* assume that x ∈ Ω1 and y ∈ Ω2 */
16: set up edge e1,2 between Ω1 and Ω2

17: weight(e1,2) ++
18: end if
19: end for
20: /*Assigning pages/rows and memory blocks*/
21: sort edges in non-increasing order based on their

weights: e1, e2, · · · ep
22: for every each pair of locality sets Ω1 and Ω2 on ei do
23: assign row(Ω1) and row(Ω2) to the same row.
24: assign block(Ω1) and block(Ω2) to the memory blocks

based on Lemma 5.2
25: end for

Step 1: Identifying the Locality Sets. We identify
all the locality sets by traversing the index array (based on
the innermost loop(s)). For each cache set, we maintain a list
that stores the most recent accesses to k different memory
blocks that are mapped to this cache set. In this way, the
block distance between the current access αx and any other
access αy on the list is never greater than k. Therefore,
during this index array traversal, only when βx = βy holds,
we place x and y into the same locality set.

Step 2: Constructing the Interference Graph. Once
the locality sets have been identified, our second step is to
construct an interference graph, in which each node repre-
sents a locality set. If αx and αy are the two accesses that
incur successive cache misses on Seq, and x and y are lo-
cated in different pages/rows (in the original memory lay-
out), then we set up an edge between the locality sets of x
and y. The weight on this edge represents the total num-
ber of such αx and αy pairs. We construct this graph by
making another pass over the index array. Each time when
two accesses, αx and αy, incur successive cache misses, i.e.,
∆(α−x , αx) > k and ∆(α−y , αy) > k,4 and x and y reside
in different pages/rows, we increase the weight of the edge
between the locality sets of x and y by 1. Overall, the
weights on the edges of the interference graph evaluate how
frequently the accesses to the data elements in two locality
sets are missed successively.
Step 3: Assigning Pages/Rows and Memory Blocks.

We first sort the edges in the interference graph in a non-

4We use the algorithm similar to Algorithm 1 to calculate
∆(α−x , αx) and ∆(a−y , αy).

increasing order of their weights. This is because, larger the
weight of an edge that connects two locality sets, a higher
fraction of row-buffer misses can be eliminated by placing
these two locality sets into the same page/row. Next, we
assign the same row to the locality sets connected by the
edge with the largest weight. At this point, we also need
to assign the memory blocks to the locality sets within that
row. This is carried out by following the rule specified in
Lemma 5.2. Once this assignment is finished, we update the
available memory positions in this row, and then assign the
row to the locality sets connected by the edge with the sec-
ond largest weight, and so on. If the assignment fails due to
the limited memory positions in a row, we simply skip this
edge and proceed with the next one.

6. FINE-GRAIN LAYOUT

Definition 6.1. Partition. Given x ∈ Ω, a partition for
x is defined as a subset of Ω, denoted as Px, where x ∈ Px.

To generate the fine-grain layout, our basic idea is that,
whenever the accesses to two data elements (denoted as x
and y) incur successive cache misses and x and y reside in
different pages/rows, we try to find two partitions for x and
y, denoted as Px and Py, respectively, such that, when plac-
ing Px and Py into the same page/row, the increased cache
miss latency is less than the reduced row-buffer miss latency.

Our proposed data reordering scheme for generating the
fine-grain layout consists of the following steps, and the cor-
responding pseudo-code is given in Algorithm 2.

Step 1: Constructing the Interference Graph. This
step is slightly different from Step 2 described in Section 5.
Now, each node in the interference graph represents a data
element, instead of a locality set. If αx and αy are two
accesses that incur successive cache misses on Seq, and x
and y are located in different pages/rows, then we set up an
edge between x and y. The weight on this edge represents
the total number of such αx and αy pairs, which is also
the number of row buffer misses that can be eliminated by
placing x and y into the same row.

Step 2: Constructing the Locality Graph. Each lo-
cality set Ω corresponds to a locality graph, where each node
represents a data element in Ω. We first identify all the lo-
cality sets using the strategy given in Algorithm 1, and then
construct the locality graph for each locality set as follows.
For any access αu whose block reuse distance is exactly k, if
there exist αx and αy within time slot [time(α−u), time(αu)],
such that x, y and u belong to the same locality set, then
we increase the weight of the edge between x and y by 1.
As a result, if we move all the elements in a partition for
x, denoted as Px, to another memory block β′x, such that
Caches(β′x) = Caches(βx), then the number of increased
cache misses is at most equal to the sum of the weights of
the edges connected to x in the locality graph. Since each
newly-increased cache miss can potentially lead to a row-
buffer miss as well, this weight also represents the maximum
number of increase in the row-buffer misses. Constructing
all these locality graphs requires one additional pass over
the index array.

Step 4: Finding Partitions. We first sort the edges
in the interference graph in a non-increasing order of their
weights, and then process the data elements on each edge
in this order. Specifically, given x and y on an edge with

Locality Set Ω1

Locality Set Ω2

Locality

Graph for Ω1

Locality

Graph for Ω2

x

Fine-Grain

Interference

Graph

y

x1

x2

x3

y1

y2

x

x1

x2

x3

y
y1

y2

N

wx1

wy1

wx3

(a)

x

x1

x2

x3

y

y1

y2

x

x1

x2

x3

y
y1

y2

x

x1

x2

x3

y
y1

y2

Locality

Graph for Ω1

Locality

Graph for Ω2

(b)

Figure 6: Example of finding the partitions that satisfy Con-
dition (1). In each locality set, the black nodes are consid-
ered to be in the same partition (for each locality graph).

weight N , which represents the number of row-buffer misses
that can be eliminated by placing x and y into the same
row, we first consider isolating x and y from their locality
sets, i.e., placing only x into Px, and only y into Py. Let
Nch and Nrb denote the total number of cache misses and
row-buffer misses that could be increased by placing Px and
Py into the memory blocks β′x and β′y, respectively, where
Caches(β′x) = Caches(βx) and Caches(β′y) = Caches(βy),
and δch and δrb denote the miss latencies in the cache and
row-buffer, respectively; then if these two partitions causes
less overall access latency than the original, we should have:

(N −Nrb) ∗ δrb > Nch ∗ δch. (1)

If Condition (1) is not satisfied, we then consider placing
the data elements connected to x (in the locality graph),
together with x, into Px, and the data elements connected
to y, together with y, into Py. We repeat this process until
Condition (1) is satisfied.5 In the worst case when no such
partitions can be found, we have Nch = Nrb = 0, which
makes Condition (1) still hold. At this point, the remain-
ing question is how to determine Nch and Nrb. Assuming

5We are not trying to obtain the optimal solution w.r.t Con-
dition (1). Instead, our point is that, as long as this condi-
tion is satisfied, the generated layout will be ”better” than
the original one.

Algorithm 2 Fine-Grain Layout Generation.

1: /*Constructing the interference graph*/
2: for every access αu in Seq do
3: if ∆(α−u , αu) = k, u ∈ Ω then
4: for each access in [time(α−u), time(αu)] do
5: αx= current access
6: if Caches(βx) = Caches(βu) then
7: /* tmp(βx) records the previous access */
8: if tmp(βx) = ∅ then
9: tmp(βx) = x

10: else
11: y = tmp(βx)
12: set up edge ex,y between x and y
13: end if
14: end if
15: end for
16: end if
17: end for
18: /* Assigning rows and memory blocks*/
19: sort edges in non-increasing order based on their

weights: e1, e2, · · · ep
20: for every each pair of x and y on ei do
21: Px ← {x}
22: Py ← {y}
23: N ← w(ex,y)
24: while (N −Nrb) ∗ δrb > Nch ∗ δch do
25: Px ← Px ∪ all neighbors of x in the locality graph
26: Py ← Py ∪ all neighbors of y in the locality graph
27: end while
28: assign row(Px) and row(Py) to the same row.
29: assign block(Px) and block(Py) to the memory blocks

based on Lemma 5.2
30: end for

that, in the locality graph, x is connected to x1, x2, · · · , xm,
with the weights wx1 , wx2 , · · · , wxm ; and y is connected to
y1, y2, · · · , yn, with the weights wy1 , wy2 , · · · , wyn ; then we
have Nch =

∑m
i=1 wxi +

∑n
i=1 wyi . Since Nch is the upper

limit for Nrb, in our current implementation, we conserva-
tively have Nrb = Nch.

Figure 6 illustrates an example for finding the partitions
that satisfy Condition (1). In this example, we assume that,
in the fine-grain interference graph, the edge between x and
y has the highest weight N , and denote the locality sets
of x and y as Ω1 and Ω2. In order to find the partitions
for x and y, we first let Px ← x and Py ← y, i.e., the
initial partitions for x and y only contain themselves. At
this point, we have Nch = wx1 +wx3 +wy1 . Assuming that
Condition (1) cannot be satisfied based on this value, then
we place all the neighbors of x and y into their partitions,
i.e., Px = {x, x1, x3} and Py = {y, y1}. Now we have Nch =
0, and therefore Condition (1) is satisfied, and the partitions
of x and y are found.

Step 4: Assigning Rows and Memory Blocks. Once
this process completes, we assign the rows and memory
blocks to the partitions (or locality sets in the worst case)
of x and y as described in Lemma 5.2.

7. DISCUSSION
Sequential code vs. parallel code: So far our discus-

sion is based on the assumption that the sequence of data

accessed by the program, Seq, is equal to the sequence of
data visited by traversing the index array. Although in a
single-threaded application, these two orders are expected
to be the same, in a multi-threaded application, the un-
predictable interferences across threads make these two or-
ders usually different. However, we want to point out that,
assuming these orders equal may be a reasonable approx-
imation. This is because, the foundation of our proposed
schemes is the relationship between the block reuse distance
of each access and the value of k. That is to say, we only
need to know whether this block distance is greater than k
or not, and do not need to know its exact value. Therefore,
they have certain tolerance to the mismatch between the“as-
sumed” and “actual” data access orders. For example, when
determining ∆(αx, αy) (assuming that βx = βy), we do not
need to figure out the exact position of ay in the actual data
access order, instead, we only need to know if ay appears in
the most-recent k accesses before ax or vice versa. There-
fore, the “assumed” data access order can be considered as a
reasonable approximation of “the actual” data access order
that will be observed at run time. There also several ex-
isting works on how to predict the data access sequence of
a multithreaded application more accurately [10, 33], which
could be our future research direction.

Complexity analysis: Next we compare the algorith-
mic complexities of our data ordering scheme with existing
schemes that target optimizing cache behavior of irregular
applications. We assume that the number of data elements
in the data access sequence is N , the length of the index
array is E, and the cache size is C. For typical graphs,
we have N >> C and N > E. The consecutive packing
(CPACK) has a cost of O(E), since it rearranges the data
elements based on their “first-touch” order and requires one
pass through the data access sequence. GPART has a cost
of O(E ∗ g(C)), where g(C) is a constant function greater
than 1, since the number of clustering passes is dependent on
the cache size, not the input data size. As a result, GPART
is only a small constant factor more expensive than CPACK.
RCB has the complexity of O(N(log2N)2), and METIS has
the cost O(2Nlog2N)+O(E) [15]. In comparison, assuming
that the inference graph has E′ edges, as can be observed
in Algorithms 1, conservative layout has the complexity of
O(N) +O(E1) since each of the first two steps requires one
pass over the index array (O(N)), and the last step requires
one traversal of the inference graph (O(E′)). For the fine-
grain layout, let us assume that the inference graph has E1

edges and the locality graph has E2 edges and V nodes.
Similar to the conservative layout, each of the first two steps
requires one pass over the index array (O(N)), and the last
step has a cost of O(E1(V +E2)). Therefore, the total cost
of generating fine-grain layout is O(N) + O(E1(V + E2)),
which is higher than the cost of generating the conserva-
tive layout, and both of our two data reordering schemes
have lower complexities than RCB and METIS, but higher
complexities than CPACK and GPART.

Implementation overheads: The inspectors are expen-
sive, but their “one-time” cost can be amortized over a long
execution time. For example, the inspectors can be inserted
outside the loop, and then, execute once before the computa-
tion begins, benefiting computations throughout the whole
loop. When access patterns change, the inspectors may be
invoked, but they need not to be rerun each time the ac-
cess patterns change. Without rerunning the inspectors, the

Table 1: Benchmark codes used in our evaluation.

Name Input Size L3
Miss
Rate

Row-Buffer
Miss Rate

Execution
Time

PSTT 427.6MB 18.1% 29.6% 9.6sec
PaSTiX 511.6MB 24.3% 41.7% 8.8sec

SSIF 129.3MB 13.7% 24.4% 4.3sec
PPS 738.2MB 21.4% 33.1% 11.1sec

REACT 1.2GB 28.6% 46.9% 13.7sec

Table 2: Architecture specification.

CPU 48 cores; 4 sockets (12 cores/socket); 4 mem-
ory controllers/socket (with FR-FCFS scheduling
policy); 2.6GHz AMD Opteron cores;

Cache
Hierar-
chy

64KB 2-way associative per core L1 (3 cycles);
512KB 16-way associative per core L2 (12 cycles);
12MB per socket 6-way associative shared L3 (28
cycles)

Memory
System

DDR3 1,866MHz DRAM; 8 banks per channel;
8KB row-buffers;

cache performance may degrade, but the application code
still generates correct results. Similar to the prior work, we
only modify the implementation of the inspector to embed
our data reordering strategies.

Data reordering itself also introduces overheads during the
execution (runtime), which mainly comes from two sources.
The first is the overhead of the data reordering itself, which
can be reduced by adjusting the number of edges in the in-
ference graph and locality graph that need to be traversed.
The compiler needs to ensure that this cost does not out-
weigh any performance gain by data reordering. The sec-
ond overhead comes from the data redirection after data re-
ordering, which maps the old memory location (before data
reordering) to the new memory location (after data reorder-
ing). Since each access to a transformed array needs to be
redirected to the access to the new memory location, this
overhead can be quite expensive. Discussion about how to
reduce this type of overhead can be found in [13].

8. EXPERIMENTAL EVALUATION

8.1 Implementation, Benchmarks and Setup
We implement our proposed schemes using the Open64

compiler [4]. In our implementation, the compiler gener-
ates run-time library calls to the inspector module to pro-
cess memory access patterns at run-time and identify non-
local data needed by each processor, and determines when
the inspectors must be rerun if the memory access patterns
change in the program code. Specifically, the compiler first
makes a pass through the program to identify the index ar-
ray. Then it finds appropriate locations where inspectors can
be inserted. To do this, a top-down traversal of the AST is
performed to identify the topmost blocks that contain the
writes to the index arrays, but do not contain correspond-
ing irregular array computations. The inspectors will be
inserted in these blocks. When the inspector is executed at
run-time, it rearranges the contents of the host arrays to
generate the desired data reordering by using Algorithms 1
and 2 presented earlier. Later, the executor (the original
loop body) will access these reordered data, which helps us
to exploit the cache and row-buffer locality.

For each application code in our experimental suite, we
tested four different versions: Original (the original code
without any modification, compiled using the default -O2
compiler flag), Cache-Optimized (a version which is opti-
mized using a previously-proposed cache locality enhance-
ment technique (GPART [15]), followed by all data locality
optimizations turned on using the -O3 compiler flag – these
optimizations include loop permutation as well as tiling among
others), Conservative (our conservative layout optimization
strategy explained in Section 5), and Fine-Grain (our fine-
grain layout optimization strategy explained in Section 6).
We want to point out that, other algorithms such METIS [18]
and RCB [9], as mention in Section 7, have significantly
higher runtime overheads than GPART and CPACK, and
they are quite expensive when used for cache optimizations
[15]. Therefore, in a scenario like ours where the layout
needs to be modified during the course execution, there is
a motivation for reordering-based techniques. In addition,
GPART performs better than METIS for most cases [15].
And, since our preliminary experiments also indicated the
same, we chose GPART for comparison. However, METIS
and similar partitioning tools have a very important role
in sparse/irregular application codes. For example, in a
cluster-environment, the target-graph can be partitioned us-
ing METIS to minimize inter-node communication, and then
the local-portion of each node can be laid out in memory us-
ing our approach. In that case, METIS and our approach
each addresses different aspects of locality: one across nodes
(minimizing communication in distributed-memory-space),
and the other across cores in a node (cache locality as well
as row-buffer locality). In addition, we did not turn on
hardware-prefetching in our experiments presented below as
it does not bring much benefit in irregular-applications. The
experiments with our approach with hardware-prefetching
turned-on did not change our savings much (it reduced the
additional benefits brought by our approach by less than
1%). Note also that, if the prefetching-algorithm is exposed
to our approach, we can adapt our approach by fine-tuning
the block-distance-calculation.

For our experimental evaluations, we used five applica-
tions: PSTT (parallel sparse FFT) [5], PaSTiX (a high per-
formance parallel solver for very large sparse linear systems
based on direct methods) [6], SSIF (sparse symmetric indefi-
nite factorization) [26], PPS (a persistent, pervasive surveil-
lance code), and REACT (Jacobian based combustion mod-
eling code). The last two applications are written by us. We
want to emphasize that the first three of these applications
are quite large programs (each having more than 5,000 lines
excluding library calls). Further, all five applications are
memory-intensive and operate on large data structures, cre-
ating a high volume of off-chip data traffic. Table 1 gives the
salient features of these applications; the last three columns
show, respectively, the last level cache miss rate, the row-
buffer miss rate, and parallel execution time on our 12 cores
(1 socket of) AMD based system (explained below). It is
important to note that, as far as row-buffer misses are con-
cerned, these applications exhibit a variety (ranging between
24.4% and 46.9%). Overall, however, these row-buffer miss
rates are quite high, and indicate poor row-buffer locality.
There are three main reasons for this. First, irregular ap-
plication inherently have poor locality within memory rows.
Second, techniques such as cache block interleaving (i.e., dis-
tributing physical memory across controllers at a cache block

!"#$
!"%$
!"&$
!"'$
!"($
)$

)")$

*
+
,-
.
/

0
1
2
3
45
.
6
$

*
7
8
9.
:;
+
2
;
.
$

<
48
.
/=
:+
48
$

*
+
,-
.
/

0
1
2
3
45
.
6
$

*
7
8
9.
:;
+
2
;
.
$

<
48
.
/=
:+
48
$

*
+
,-
.
/

0
1
2
3
45
.
6
$

*
7
8
9.
:;
+
2
;
.
$

<
48
.
/=
:+
48
$

>?$@499.9$ A7B/CDE.:$@499.9$ FG.,D278$*H,I.9$

J
7
:3

+
I4
5.
6
$B
:K
$0
:4
L
48
+
I$

MNOO$ M+NO4P$ NNQ<$ MMN$ AFR*O$

Figure 7: Results with AMD based multicore system.

granularity), while good for memory level parallelism, hurt
row-buffer locality as consecutive cache blocks go to differ-
ent banks, reducing the amount of row buffer reuse. Third,
running an irregular application in a multithreaded fashion
further spreads data access across the memory space, and
this in turn also has a negative impact on row-buffer local-
ity.

In this work, we performed two types of evaluations. First,
we measured the impact of our optimizations on an AMD
Opteron based multicore with 8 cores, 2.6GHz core speed
and a total of 12MB L3 last-level cache. The relevant im-
portant characteristics of this system are given in Table 2.
All the cache and row-buffer statistics reported in this table
as well as those presented in the remainder of this section
for this AMD based machine are collected by monitoring the
Opteron CPU and memory controller performance counters.
Second, we also simulated our approach on GEM5 multicore
simulator [1]. The reason for the simulation based experi-
ments is this: while the AMD multicore experiments clearly
show the impact of our proposed row-buffer optimization,
it is not possible in a real hardware to change different pa-
rameters and test how our approach would perform, for in-
stance, when we increase the number of memory controllers,
change the row-buffer size, bank count, etc. To carry out
all these sensitivity studies, we also conducted a simulation-
based evaluation.

8.2 Results with AMD Opteron
Figure 7 gives the results collected on one socket (12 cores)

of our AMD Opteron based system (multi-socket results will
be presented later). The y-axis in this plot represents nor-
malized value (L3 miss rates, row-buffer miss rates, and ex-
ecution cycles) with respect to Original (the absolute values
of these metrics with Original are listed in Table 1). It can
be seen that all three optimized versions (Cache-Optimized,
Conservative and Fine-Grain) improve – except in two cases
–over Original in all metrics quantified. More specifically,
Cache-Optimized improves cache performance (with a geo-
metric average of 20.6%) but does not bring much benefit
as far as row-buffer locality is concerned, indicating that
conventional cache optimizations may not be very effective
when it comes to row-buffers. This version brings an average
of 20.8% reduction in execution cycles compared to Origi-
nal. Conservative on the other hand exhibits a different
behavior. While maintaining the same cache performance
as Cache-Optimized (difference between their cache perfor-
mance is around 1% in some applications), it cuts the row-

!"#$
!"%$
!"&$
!"'$
!"($
)$

)")$

*
+
,-
.
/

0
1
2
3
45
.
6
$

*
7
8
9.
:;
+
2
;
.
$

<
48
.
/=
:+
48
$

*
+
,-
.
/

0
1
2
3
45
.
6
$

*
7
8
9.
:;
+
2
;
.
$

<
48
.
/=
:+
48
$

*
+
,-
.
/

0
1
2
3
45
.
6
$

*
7
8
9.
:;
+
2
;
.
$

<
48
.
/=
:+
48
$

>?$@499.9$ A7B/CDE.:$@499.9$ FG.,D278$*H,I.9$

J
7
:3

+
I4
5.
6
$B
:K
$0
:4
L
48
+
I$

MNOO$ M+NO4P$ NNQ<$ MMN$ AFR*O$

Figure 8: Simulation results.

buffer misses significantly (an average of 19.2% reduction
over Original). Finally, Fine-Grain sacrifices some cache per-
formance but in return achieves an average row-buffer miss
reduction of 31.8%. At the end, Conservative and Fine-
Grain improve 30.6% and 35.6%, respectively, over Origi-
nal, in terms of execution time. These results demonstrate
that Fine-Grain is very successful in trading cache perfor-
mance for better overall memory performance, and selecting
the right tradeoff point (which our approach tries to do) can
result in significant improvements in execution time as well.

8.3 Simulation Results
We also evaluate the sensitivity of proposed scheme to dif-

ferent important architectural parameters and used a simu-
lator (Gem5 [1]) for that. Specifically, there are four main
parameters we wanted to study in detail: row-buffer size,
number of memory controllers, number of cores, and L3 ca-
pacity. To carry out this study, we first modeled our AMD
machine in the simulator as accurately as we can (using the
values in the AMD system for all major parameters, the
same compiler and the same thread mapping) and tried to
replicate the results collected in the real system. The re-
sults presented in Figure 8 are a bit different from those in
Figure 7 – as far as absolute values are concerned – but the
general trends are similar.

In the remainder of this subsection, we present results for
only one of our applications (PPS) since the general obser-
vations/trends with the others were similar. Figure 9(a)
presents the sensitivity of our approach to row-buffer size.
Remember that our default buffer size was 8KB (see Ta-
ble 2). We see that our approaches (Conservative and Fine-
Grain) perform better with larger row-buffer sizes. This
is because a larger row-buffer size give more flexibility to
our approach in reorganizing data elements. While Cache-
Optimized also takes advantage of a larger row-buffer size,
its improvement is far below than those of Conservative and
Fine-Grain, and quickly saturates. Next, we report in Fig-
ure 9(b) the impact of varying the number of memory con-
trollers, per socket. Again (and as would be expected), Con-
servative and Fine-Grain take much better advantage of the
increased number of memory controllers. This is mainly
because a larger number of controllers means that accesses
are spread more in the memory space and this presents more
scope to our approaches for optimization. We observe a sim-
ilar trend when the number of cores per socket is increased
(Figure 9(c)) for a similar reason – wider distribution of
data accesses in the memory space with increased number

!"#$

!"%$

!"&$

!"'$

!"($

!")$

#*+$ (*+$,&*+$ -.*+$!
"
#$

%
&'
()
*
+,
-
)
./
0
"
1
+

2
3
.&
)
4+

5"678/9)#+:'()+

/0123456789:3;$ /<=>3?@07@3$ A9=34B?09=$

!"#$

!"%$

!"&$

!"'$

!"($

!")$

.$ #$ ($!
"
#$

%
&'
()
*
+,
-
)
./
0
"
1
+

2
3
.&
)
4+

!/$;)#+"<+=)$"#3+2"1>#"&&)#4+

/0123456789:3;$ /<=>3?@07@3$ A9=34B?09=$

!"#$

!"%$

!"&$

!"'$

!"($

!")$

#$ ($,.$,&$.!$

!
"
#$

%
&'
()
*
+,
-
)
./
0
"
1
+

2
3
.&
)
4+

!/$;)#+"<+2"#)4+

/0123456789:3;$ /<=>3?@07@3$ A9=34B?09=$

!"#$

!"%$

!"&$

!"'$

!"($

!")$

,$

(C+$,!C+$,.C+$,#C+$,&C+$

!
"
#$

%
&'
()
*
+,
-
)
./
0
"
1
+

2
3
.&
)
4+

?@+2%A%.'>3+

/0123456789:3;$ /<=>3?@07@3$ A9=34B?09=$

D0E$ DFE$

D1E$ D;E$

Figure 9: Results of sensitivity analysis (normalized w.r.t
original).

!"#$

!"%$

!"&$

!"'$

!"($

)$

*
+
,-
.
/

0
1
2
3
45
.
6
$

*
7
8
9.
:;
+
2
;
.
$

<
48
.
/=
:+
48
$

*
+
,-
.
/

0
1
2
3
45
.
6
$

*
7
8
9.
:;
+
2
;
.
$

<
48
.
/=
:+
48
$

*
+
,-
.
/

0
1
2
3
45
.
6
$

*
7
8
9.
:;
+
2
;
.
$

<
48
.
/=
:+
48
$

)$97,>.?$ @$97,>.?9$ A$97,>.?9$

B
7
:3

+
C4
5.
6
$D
E
.
,F
2
7
8
$*
G
,C
.
9$

HIJJ$ H+IJ4K$ IIL<$ HHI$ MDN*J$

Figure 10: Multi-socket evaluation on AMD (normalized
w.r.t original).

of cores. Our last sensitivity study involves changing L3 ca-
pacity (from its default value of 12MB). The results plotted
in Figure 9(d) show that as cache capacity per core gets
reduced, we can expect better savings from our layout opti-
mization approaches.

An important conclusion from these sensitivity experi-
ments is that our approach performs better with larger num-
ber of cores, larger number of memory controllers, increased
row-buffer sizes and reduced last level cache space per core
(not the cumulative LLC size), all of which are current
trends in computer architecture. In other words, we can
expect our optimizations to continue to be effective in the
long run.

8.4 Multi-Socket Evaluation in Opteron
Recall that in our evaluation on the AMD based machine

presented above, we used a single socket. Figure 10 plots
normalized execution time (with respect to Original) with 2
sockets and 4 sockets as well. In the 2 socket case, each appli-
cation is parallelized over 24 cores and in the case of 48 cores.
The results indicate that, while savings achieved by our ap-
proaches, Conservative and Fine-Grain, get a bit reduced
with increased socket count, overall they still achieve signifi-

!"#$
!"%$
!"&$
!"'$
!"($
)$

)")$
)"*$

+
,
-.
/
01
2
3
4
56
/
7
$

+
8
9
:/
;<
,
3
<
/
$

=
59
/
0>
;,
59
$

+
,
-.
/
01
2
3
4
56
/
7
$

+
8
9
:/
;<
,
3
<
/
$

=
59
/
0>
;,
59
$

+
,
-.
/
01
2
3
4
56
/
7
$

+
8
9
:/
;<
,
3
<
/
$

=
59
/
0>
;,
59
$

?@$A5::/:$ B8C0DEF/;$A5::/:$ G8;4,H56/7$

I/5J.K/7$L2//7E2$

G
8
;4

,
H5
6/
7
$C
;K
$1
;5
J
59
,
H$

MLLNOM,LN5P$ M,LN5POLLQ=$ LLQ=OBRS+N$

Figure 11: Multiprogrammed workload evaluation on AMD.

cant savings (the geometric mean of execution improvement
is 28.3% and 33.3% in the 2-socket case, and 26.1% and
31.2% in the 4-socket case). The slight reduction when us-
ing 2/4 sockets is probably due to non-local accesses (those
going from one socket to another) playing a major role in
shaping the overall memory performance, and reducing the
effectiveness of improved row-buffer behavior.

8.5 Multiprogrammed Workload Evaluation
in Opteron

Our last set of experiments focus on the execution of a
multiprogrammed workload of multithreaded applications.
In this experiment, we formed three workloads, each con-
sisting of two applications executing on 6 cores of a socket.
That is, two applications share the cores in a socket equally.
It should be noted that we can expect the effectiveness of our
approaches to reduce in this case, primarily because both
applications in a workload will share the same 4 memory
controllers (hence same set of row-buffers) in the socket,
and this will cause extra row-buffer conflicts/misses for each
application (due to interference). The metric we use to rep-
resent performance is “combined speedup”, which is basi-
cally the average speedup the two applications achieve over
their Original versions. The results plotted in Figure 11
show that, when averaged over all three workloads, Conser-
vative and Fine-Grain achieve 7.3% and 14.7% performance
improvement. Therefore, it can be concluded that our ap-
proach is very effective even if multiple applications share
the same set of memory controllers.

8.6 Results with Different Memory Schedul-
ings

DRAM is a major resource shared among cores in a mul-
ticore machine, and memory requests from different threads
can interfere with each other when accessing this shared re-
source. Motivated by this, there is a plethora of hardware-
based memory request scheduling algorithms oriented to-
wards reducing this potential interference and increase the
overall throughput of the memory system. As stated in Ta-
ble 2, the default memory scheduling we used so far (and the
dominant scheduling algorithm in commercial chips) is FR-
FCFS, which works by implementing first-come, first-served
(FCFS) strategy in serving the memory requests, except
when there are memory requests in the queue that target
the current memory row in the row-buffer. That is, FR-

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

)*++"),*+-." **/0"))*" 1234+"

5
6
78

,
9-
:;
<
"2
=
;
>?
@
6
A
"4
B
>9
;
C"

040*" 040*"D46AC;7E,@E;F" 040*"D0-A;GH7,-AF"

01G040*" 01G040*"D46AC;7E,@E;F" 01G040*"D0-A;GH7,-AF"

3+I3*" 3+I3*"D46AC;7E,@E;F" 3+I3*"D0-A;GH7,-AF"

+4J" +4J"D46AC;7E,@E;F" +4J"D0-A;GH7,-AF"

Figure 12: Results with different memory scheduling algo-
rithms (normalized w.r.t FR-FCFS (with original)).

FCFS give priority to requests that can reuse the row-buffer
contents; when no such request can be found in the queue, it
resorts to FCFS. Recent years have witnessed more sophisti-
cated memory scheduling policies that are very aggressive in
prioritizing memory requests and coordinating memory con-
trollers to further improve memory throughput. Two such
schemes are ATLAS [19] and TCM [20]. While ATLAS pe-
riodically orders the threads based on the service they have
attained from the memory controllers so far, and prioritize
those threads that have attained the least service over others
in each period, TCM divides the threads into two separate
clusters and employ different memory request scheduling
policies in each cluster. Using GEM5, we evaluated our con-
servative and fine-grain layout optimization strategies under
pure FCFS (without any prioritization), ATLAS and TCM,
and plot results in Figure 12. Note that the bar marked as
“FR-FCFS” indicates the execution of Original benchmark
under the FR-FCFS policy, and represents the base case
that we have used so far. Several interesting observations
can be made from this plot. First, the performance of FCFS
powered with our layout optimization algorithms are com-
petitive with FR-FCFS with the original codes. Given the
fact that going from FCFS to FR-FCFS in hardware requires
a lot of additional cost and complexity (as one need to check
all the entries in the memory queue to see whether they ac-
cess the row currently in the row-buffer), we believe that our
software based strategy provides a cost effective alternative
to hardware optimization. Second, we see that using our
approach with FR-FCFS generates better results than using
the original codes with ATLAS or TCM. Third, our layout
reorganization strategy improves the performance of ATLAS
and TCM significantly, and in fact, the highest performance
improvement is achieved by TCM (Fine-Grain). In princi-
ple, these savings can be further increased by making our
approach aware of the underlying memory scheduling algo-
rithm; we postpone the investigation of this problem to a
future study.

9. RELATED WORK
There exist many work related to row buffer locality [19,

20, 32, 39, 29, 17, 7, 43]. Lee et. al. [23] tries to reduce in-
terference between reads and writes in the memory channel.
They take advantage of row buffer hits by scheduling write
backs that will hit in the row buffer before they are evicted

from the cache. Awasthi et al. [8] proposed an Access Based
Predictor, which keeps a history of the number of accesses to
each DRAM page in order to predict how long the row buffer
should remain open when that page is present. Yoon et al.
[38] avoid the high cost of phase-change memory (PCM) row
buffer misses in hybrid memories by moving memory blocks
that frequently miss in the row buffer into DRAM. Their
scheme also considers row buffer locality as a factor in decid-
ing which blocks to move. Meza et al. [27] study the benefits
of smaller row buffer sizes for non-volatile memory. Zhang et
al. [41] described causes of row buffer conflicts when using a
page interleaving policy. Their work improved row buffer hit
rates using permutations that preserve data locality while
distributing pages to reduce conflicts. Similarly, [36] tried
to improve row buffer hit rates by decreasing the OS page
size and moving frequently accessed pages into the same
row. Most of these prior works concerning the row buffer
locality target hardware, while our work uses compiler opti-
mizations. There have not been as many compiler schemes
for row buffer locality. One work [34] uses loop transfor-
mations to improve spatial locality of pages and therefore
row buffer reuse. Unlike our approach, their optimization
relies on dependences between data elements. Also, they
target single-thread locality rather than taking into account
the row buffer locality of the entire application. Another
compiler scheme [14] targeted the row buffer locality of reg-
ular applications with affine loops. In contrast, we target
irregular applications and try to improve row-buffer locality
by trading cache performance for the overall memory per-
formance.

Optimizations for irregular applications often target data
layout. Data clustering is an NP-hard problem, as shown
in early work by Thabit [37]. Furthermore, Petrank and
Rawitz [30] demonstrated that data placement to minimize
cache misses is an inapproximable optimization problem.
Zhong et al. [42] introduce a metric of the closeness of data
accesses based on LRU stack distance called reference affin-
ity. Zhang et al. [40] looked at reference affinity from both
a theoretical and a practical perspective. Our concept of
a locality set differs from the affinity group described by
these papers in that locality set describes a set of elements
in the cache with good locality, while an affinity group is
built based on the reference affinity metric. More practical
approaches to the problem of irregular accesses include [13,
15, 25, 28, 35]. However, all these studies either try to im-
prove parallelism, or reduce runtime overheads, or improve
cache performance. None of them addresses row-buffer local-
ity. [15] proposed a hierarchical graph clustering algorithm
(GPART) to improve cache locality.

10. CONCLUSIONS
In a system that employs open page policy, exploiting

row-buffer locality can be critical. The novel contribution
of this paper is a compiler-directed data layout reorgani-
zation scheme with the goal of improving row-buffer local-
ity of large, irregular applications. In particular, we pro-
pose, implement and test two alternate layout reorganization
schemes, the first trying to improve row-buffer hits without
negatively affecting the cache locality (hit/miss statistics)
of a cache-optimized code, whereas the second one trading
off cache hits to further improve the row-buffer hits, and
eventually the overall application performance.

Acknowledgment
This research is supported in part by NSF grants #0963839,
#1302557, #1213052, #1017882, and #1205618, a grant
from INTEL an a grant from MICROSOFT.

11. REFERENCES
[1] “Gem5,” http://gem5.org.

[2] “Intel pentium 4 and intel xeon processor optimization,
reference manual,” http://developer.intel.com.

[3] “Intel Xscale core, developer’s manual,”
http://developer.intel.com.

[4] “Open64,” http://www.open64.net.

[5] “Spiral: Software/hardware generation for dsp
algorithms,”
http://www.spiral.net/.

[6] “The PaSTiX Library,” http://pastix.gforge.inria.fr/.

[7] R. Ausavarungnirun, K. Kai-wei, C. Lavanya,
S. Gabriel, H. Loh, and O. Mutlu, “Staged memory
scheduling: achieving high performance and scalability
in heterogeneous systems,” In Proceedings of the
International Symposium on Computer Architecture,
2012.

[8] M. Awasthi, D. W. Nellans, R. Balasubramonian, and
A. Davis, “Prediction based DRAM row-buffer
management in the many-core era,” In Proceedings of
the International Conference on Parallel Architectures
and Compilation Techniques, 2011.

[9] M. Berger and S. Bokhari, “A partitioning strategy for
non-uniform problems on multiprocessors,” IEEE
Trans. Computers, 1987.

[10] P. Boonserm, B. Wang, S. See, and T. Achalakul,
“Improving data processing time with access sequence
prediction,” in Proceedings of the International
Conference on Parallel and Distributed Systems, 2012.

[11] P. Carribault, S. Zuckerman, A. Cohen, and W. Jalby,
“Deep jam: Conversion of coarse-grain parallelism to
instruction-level and vector parallelism for irregular
applications,” In Proceedings of the International
Conference on Parallel Architectures and Compilation
Techniques, 2005.

[12] R. Das, M. Uysal, J. Saltz, and Y. shin Hwang,
“Communication optimizations for irregular scientific
computations on distributed memory architectures,”
Journal of Parallel and Distributed Computing, 1993.

[13] C. Ding and K. Kennedy, “Improving cache
performance in dynamic applications through data
and computation reorganization at run time,” In
Proceedings of the Conference on Programming
Language Design and Implementation, 1999.

[14] W. Ding, J. Liu, K. Mahmut, and M. J. Irwin,
“Reshaping cache misses to improve row-buffer locality
in multicore systems,” In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, 2013.

[15] H. Han and C.-W. Tseng, “Exploiting locality for
irregular scientific codes,” IEEE Trans. Parallel
Distrib. Syst., 2006.

[16] J. L. Hennessy and D. Patterson, Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, 2003.

[17] E. Ipek, O. Mutlu, J. F. Mart́ınez, and R. Caruana,
“Self-optimizing memory controllers: A reinforcement
learning approach,” In Proceedings of the International
Symposium on Computer Architecture, 2008.

[18] G. Karypis and V. Kumar, “A fast and high quality
multilevel scheme for partitioning irregular graphs,”
SIAM Journal on Scientific Computing, 1998.

[19] Y. Kim, D. Han, O. Mutlu, and M. Harchol-balter,
“ATLAS: A scalable and high-performance scheduling
algorithm for multiple memory controllers,” In
Proceedings of the International Symposium On High
Performance Computer Architecture, 2010.

[20] Y. Kim, M. Papamichael, O. Mutlu, and
M. Harchol-balter, “Thread cluster memory
scheduling: Exploiting differences in memory access
behavior,” In Proceedings of the International
Symposium on Microarchitecture, 2010.

[21] D. Kroft, “Lockup-free instruction fetch/prefetch
cache organization,” Computer Architecture, 1981.

[22] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and
C. Casçaval, “How much parallelism is there in
irregular applications?” In Proceedings of the ACM
SIGPLAN symposium on Principles and practice of
parallel programming, pp. 3–14, 2009.

[23] C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and
Y. N. Patt, “Dram-aware last-level cache writeback:
Reducing write-caused interference in memory
systems,” HPS Technical Report, 2010.

[24] W. Liu and A. Sherman, “Comparative analysis of the
cuthill-mckee and the reverse cuthill-mckee ordering
algorithms for sparse matrices,” SIAM Journal on
Numerical Analysis, 1976.

[25] J. Mellor-Crummey, D. Whalley, and K. Kennedy,
“Improving memory hierarchy performance for
irregular applications,” In Proceedings of the
International Conference on Supercomputing, 1999.

[26] O. Meshar, D. Irony, and S. Toledo, “An out-of-core
sparse symmetric-indefinite factorization method,”
ACM Trans. Math. Softw., 2006.

[27] J. Meza, J. Li, and O. Mutlu, “Evaluating row buffer
locality in future non-volatile main memories,”
SAFARI Technical Report, 2012.

[28] N. Mitchell, L. Carter, and J. Ferrante, “Localizing
non-affine array references,” In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, 1999.

[29] O. Mutlu and T. Moscibroda, “Stall-time fair memory
access scheduling for chip multiprocessors,” In
Proceedings of the International Symposium on
Microarchitecture, 2007.

[30] E. Petrank and D. Rawitz, “The hardness of cache
conscious data placement,” In Proceedings of the
Conference on Principles of Programming Languages,
2002.

[31] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher,
M. A. Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth,
R. Manevich, M. Méndez-Lojo, D. Prountzos, and
X. Sui, “The tao of parallelism in algorithms,” In
Proceedings of the Conference on Programming
Language Design and Implementation., 2011.

[32] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and
J. D. Owens, “Memory access scheduling,” In
Proceedings of the International Symposium on
Computer Architecture, 2000.

[33] M. F. Sakr, S. P. Levitan, D. M. Chiarulli, B. G.
Horne, and C. L. Giles, “Predicting multiprocessor
memory access patterns with learning models,” In
Proceedings of the International Conference on
Machine Learning, 1997.

[34] J. Shin, J. Chame, and M. W. Hall, “A compiler
algorithm for exploiting pagemode memory access in
embeddeddram devices,” In Proceedings of the
Workshop on Media Streaming Process, 2002.

[35] M. M. Strout, L. Carter, and J. Ferrante,
“Compile-time composition of run-time data and
iteration reorderings,” In Proceedings of the
Conference on Programming Language Design and
Implementation, 2003.

[36] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi,
R. Balasubramonian, and A. Davis, “Micro-pages:
increasing dram efficiency with locality-aware data
placement,” In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2010.

[37] K. Thabit, “Cache management by the compiler,”
Ph.D. dissertation, Rice University, Houston, TX,
USA, 1982.

[38] H. Yoon, J. Meza, R. Ausavarungnirun, R. Harding,
and O. Mutlu, “Row buffer locality-aware data
placement in hybrid memories,” SAFARI Technical
Report, 2011.

[39] G. L. Yuan, A. Bakhoda, and T. M. Aamodt,
“Complexity effective memory access scheduling for
many-core accelerator architectures,” In Proceedings of
the International Symposium on Microarchitecture,
2009.

[40] C. Zhang, C. Ding, M. Ogihara, Y. Zhong, and
Y. Wu, “A hierarchical model of data locality,” In
Proceedings of the Conference on Principles of
Programming Languages, 2006.

[41] Z. Zhang, Z. Zhu, and X. Zhang, “A
permutation-based page interleaving scheme to reduce
row-buffer conflicts and exploit data locality,” In
Proceedings of the International Symposium on
Microarchitecture, 2000.

[42] Y. Zhong, M. Orlovich, X. Shen, and C. Ding, “Array
regrouping and structure splitting using
whole-program reference affinity,” In Proceedings of
the Conference on Programming Language Design and
Implementation, 2004.

[43] Z. Zhu and Z. Zhang, “A performance comparison of
dram memory system optimizations for SMT
processors,” In Proceedings of the International
Symposium on High-Performance Computer
Architecture, 2005.

