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Abstract—Graphics Processing Units (GPUs) are becoming a
de facto choice for accelerating applications from a wide range of
domains ranging from graphics to high-performance computing.
As a result, it is getting increasingly desirable to improve the
cooperation between traditional CPUs and accelerators such as
GPUs. However, given the growing security concerns in the CPU
space, closer integration of GPUs has further expanded the
attack surface. For example, several side-channel attacks have
shown that sensitive information can be leaked from the CPU
end. In the same vein, several side-channel attacks are also now
being developed in the GPU world. Overall, it is challenging to
keep emerging CPU-GPU heterogeneous systems secure while
maintaining their performance and energy efficiency.

In this paper, we focus on developing an efficient defense
mechanism for a type of correlation timing attack on GPUs. Such
an attack has been shown to recover AES private keys by exploit-
ing the relationship between the number of coalesced memory
accesses and total execution time. Prior state-of-the-art defense
mechanisms use inefficient randomized coalescing techniques
to defend against such GPU attacks and require turning-off
bandwidth conserving techniques such as caches and miss-status
holding registers (MSHRs) to ensure security. To address these
limitations, we propose BCoal – a new bucketing-based coalescing
mechanism. BCoal significantly reduces the information leakage
by always issuing pre-determined numbers of coalesced accesses
(called buckets). With the help of a detailed application-level
analysis, BCoal determines the bucket sizes and pads, if necessary,
the number of real accesses with additional (padded) accesses to
meet the bucket sizes ensuring the security against the correlation
timing attack. Furthermore, BCoal generates the padded accesses
such that the security is ensured even in the presence of MSHRs
and caches. In effect, BCoal significantly improves GPU security
at a modest performance loss.

Index Terms—GPUs, Hardware Security, Coalescing

I. INTRODUCTION

Graphics Processing Units (GPUs) provide orders of magni-
tude higher throughput compared to CPUs thanks to a large
number of computational units attached with high bandwidth
memory. GPUs have traditionally accelerated a wide-range
of arguably security insensitive applications ranging from
gaming to high-performance computing. However, many appli-
cations that benefit from GPUs nowadays process or contain
security/privacy-sensitive information. For example, DNA and
financial computing applications that heavily process private
data are taking advantage of GPUs [1], [2]. The deep learning
community has significantly benefited from the computational
power of GPUs but now is also concerned about the privacy

of their models and vendors; they are interested in protecting
them from motivated attackers [3], [4]. Cryptographic and
other computations that handle sensitive data are also known to
achieve significant performance benefits from GPUs [5]–[11].

With the growing need for secure GPU computation, it
is important to protect GPUs from a variety of possible side-
channel attacks. For example, several attacks (especially, cache-
based side-channel attacks [12]–[18]) on the CPU side have
exploited the fact that critical information can be leaked if
it affects the latency (or total execution time). In the same
vein, new correlation timing attacks and covert channels [6],
[19]–[21] are being exposed in GPUs – a recent attack [6]
showed that AES private keys can be recovered by exploiting
the correlation between the number of coalesced accesses
and execution time. Specifically, an attacker exploits the
relationship between the private keys and the number of
coalesced accesses to reveal the entire private key by performing
off-line correlation analysis with the help of recorded execution
time and encrypted (cipher) text information.1

Kadam et al. [5] presented the first work to address the
aforementioned correlation timing attack. They showed that by
randomizing the logic of coalescing unit (RCoal), additional
accesses can be generated such that the correlation between
the baseline (real) accesses and the execution time is reduced.
Consequently, the attacker finds it hard to recover the private
keys. However, we find that RCoal has two major drawbacks.
First, the performance loss for security gain is very high due
to the randomization of coalescing logic, especially for large
plain texts. Second, RCoal provides sub-optimal security in the
presence of other memory bandwidth conserving mechanisms
such as miss-status holding registers (MSHRs) and caches. As
we further demonstrate in Section III, the additional duplicate
accesses generated during randomization are merged back in
MSHRs to render RCoal ineffective. Therefore, RCoal turned-
off caches and MSHRs for security reasons, leading to even
more significant performance overheads.

To efficiently address the limitations of RCoal, we propose a
new bucketing-based coalescing technique – BCoal. It always
generates the number of coalesced accesses equal to one of
the pre-determined values (known as buckets), irrespective of
program secrets. This implies BCoal would generate additional

1More details on the attack are provided in Section II.
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memory accesses (if necessary) along with the real accesses
to match the bucket requirements. As the number of accesses
is always equal to the pre-determined values, the variance in
the number of accesses drops. As a result, BCoal reduces the
correlation to mitigate the timing attack.

To reduce the performance overhead of additional accesses,
we select optimal bucket features by analyzing the application-
level coalescing profile. The goal of profiling is to select the
bucket features such that overall fewer additional accesses are
generated. Further, we observe that the generation of additional
accesses is non-trivial because we need to ensure that they
affect the execution time at the same rate as the real accesses,
otherwise their effect on the execution time can be filtered out
(i.e., noise can be filtered out from signal). To address this issue,
we generate unique additional accesses to the same memory
space as that of the real accesses. We find that this helps in
reducing the disparity between caching/merging probabilities
of real accesses and additional accesses, thereby making their
individual effects on execution time also similar. Consequently,
our bucketing-based coalescing technique provides security
even in the presence of MSHRs and caches.

To the best of our knowledge, this is the first work that
proposes a bucketing-based coalescing technique for GPUs to
achieve better security compared to the state-of-the-art scheme
while incurring low overhead. In summary, this paper makes
the following contributions:
•We perform a detailed analysis to show that the state-of-the-

art defense schemes against the coalescing-based correlation
timing attack are inefficient. They incur a significant perfor-
mance and data movement overhead as they work only when
the bandwidth conserving hardware such as caches and MSHRs
are not employed.
• We propose a new bucketing-based coalescing mechanism

(BCoal) that always issues pre-determined numbers (chosen
from a small set, called buckets) of coalesced accesses by
padding additional accesses to the real accesses, if necessary.
• Our analysis shows that the generation of padded accesses

is non-trivial and the effect of MSHRs and caches should be
considered to ensure security. BCoal implements a homoge-
neous padding mechanism to ensure that the real and padded
accesses affect the execution time similarly even in the presence
of MSHRs and caches. Therefore, an attacker fails to separate
the timing effect of padded accesses thereby improving the
security.
• Our theoretical and experimental analysis shows that BCoal

significantly improves the security (i.e., drops the correlation
by up to 100%) at a modest performance overhead ranging
from 5% to 15%. We also evaluate BCoal across a large
set of GPGPU applications and show that coalescing with
three equally-spaced buckets provides an excellent performance-
security trade-off that can be leveraged to secure the GPUs.

II. BACKGROUND

This section briefly introduces: a) the baseline GPU archi-
tecture, b) bandwidth conserving mechanisms, c) the AES

encryption on GPU, and d) the baseline correlation timing
attack and the state-of-the-art defense mechanism against it.

A. Basics of GPU Architecture

We consider a baseline GPU architecture with multiple cores,
known as streaming multiprocessors (SMs) in NVIDIA termi-
nology. The SMs are connected to memory partitions via an
interconnect as shown in Figure 1. GPUs achieve high through-
put by executing a large number of threads concurrently. To fa-
cilitate this, GPUs are supported by a large register file (for fast
context switching across threads) and high bandwidth memories
(for fast data access to a large number of concurrent threads).

. . .
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Global Memory (DRAM)

PE . . .
LD/ST Unit

SM

Coalescing Unit

MSHR
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PE PE . . .
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Fig. 1: Overview of Base-
line GPU Architecture.

Each SM executes the threads
assigned to it at the granularity
of a warp, which is essentially
a collection of (usually 32) indi-
vidual threads that execute a sin-
gle instruction on the processing
elements (PEs) of the SM in a
lock-step. The warps hide long
memory latencies to improve the
utilization/throughput of the SM
via executing in a pipelined and
multiplexed manner. Throughout
the paper, we evaluate the pro-
posed techniques on a cycle-level GPU simulator – GPGPU-
Sim [22]. Table I provides details of the simulated architecture.

TABLE I: Key configuration parameters of the simulated GPU.

Core Features 1400MHz core clock, SIMT width = 32 (16 × 2)
Resources / Core 32KB shared memory, 32KB register file, 15 SMs
L1 Caches / Core 16KB 4-way L1 data cache, 2KB 4-way I-cache

128B cache block size
L2 Caches 16-way 256 KB/memory channel (1536 KB in total),

128B cache block size
Features Inter-warp merging enabled
Memory Model 6 GDDR5 Memory Controllers, FR-FCFS scheduling

16 DRAM-banks, 924 MHz memory clock
Interconnect 1400MHz interconnect clock

B. Bandwidth Conserving Mechanisms

Memory bandwidth is one of the most performance-critical
shared resources in GPUs [23], [24]. GPUs adopt several
memory bandwidth optimization techniques, such as memory
access coalescing, caching and merging to reduce the number
of accesses to the global memory. In this sub-section, we
provide a brief overview of these optimizations.
Access Coalescing. In GPUs, threads within a warp execute the
instructions in lockstep. For a global memory load instruction,
all 32 threads within a warp execute 32 load instructions. The
coalescing unit in the LD/ST unit merges multiple memory
requests from different threads of the same warp (intra-warp
coalescing) into as few cache line-sized coalesced memory
accesses as possible. The intra-warp coalescing happens at
the sub-warp granularity, where the coalescing unit of the SM
determines the coalesced accesses of the warp by examining
a group of threads belonging to the same sub-warp. If
the threads of a sub-warp access data within a contiguous
memory block, their requests are coalesced together to reduce
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memory bandwidth consumption. The size and number of
sub-warps are typically fixed and remain the same throughout
the application execution. However, to achieve security, the
coalescing mechanisms can be randomized (RCoal [5]) so that
the coalesced accesses are no longer predictable to the attacker.
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Fig. 2: Memory access coalescing in GPUs.

Figure 2 illustrates the coalescing in baseline GPU and pre-
viously proposed randomized coalescing techniques. Assume
a single warp with four threads. The per-thread addresses
and the requested block addresses (BA) are shown with
corresponding thread-ids (tid) and sub-warp id (sid). In the
baseline GPU, we assume a single sub-warp (sid = 0 for
all threads) and hence all threads participate together in the
coalescing. Since the requests from tid 1 and 2 map to the
same cache block, only three accesses are generated ( A ) to
conserve the memory bandwidth. With randomized coalescing,
the threads are randomly assigned to subwarps and hence
lead to unpredictable effects on coalescing. In Figure 2(b), we
observe that four accesses are generated ( B ) due to different
sub-warp ids assigned to the random groups of thread. More
details on the randomized coalescing techniques are discussed
in Section II-D.
Caching. GPUs further conserve the memory bandwidth by
exploiting the temporal and spatial locality in memory accesses
across and within warps with the help of hardware caches.
Current GPUs employ two levels of caches, L1-cache (shared
by the warps executing on the same SM) and L2-cache (shared
by the warps executing on different SMs).
Access Merging. The coalesced memory accesses from a warp
are sent to the L1-cache. Upon cache misses, the memory ac-
cesses are logged in the miss-status holding registers (MSHRs).
Multiple cache-missed coalesced accesses to the same cache
block from different warps on the same SM are merged (inter-
warp merging) in MSHRs. Note that as independent loads
from the same warp can be issued to improve memory-level
parallelism, MSHRs also help in merging redundant accesses
from the same warp (intra-warp merging) if they are issued at
different times. Another source of inter-warp merging is via
MSHRs at L2-cache, where the redundant L2-cache misses
(across different SMs) can be merged together.

C. AES Encryption

To demonstrate the GPU timing attack exploiting the
vulnerability due to memory coalescing, we consider the widely

used symmetric-key algorithm, Advanced Encryption Standard
(AES) [25]–[29] with a key length of 128 bits, to encrypt the
plaintext. AES-128 algorithm consists of 10 rounds, each with
a 16-bytes round key generated from the encryption key. We
focus on the last round of the AES, which is shown to be the
most vulnerable to side-channel attacks [6]. The last round
involves a table (for the S-box table T4) look-up operation
followed by bitwise XOR operation with the last round key.

Our AES implementation on GPU is from Jiang et al. [6],
[11], which was used in the original attack [6] and a known
defense [5]. We used the same implementation for a fair
comparison. The AES implementation on GPU involves
dividing the plaintext across multiple parallel threads to achieve
high throughput. Each thread encrypts a line of the plaintext
independent of other threads. Therefore, a warp consisting of
32 threads can perform 32 different encryptions concurrently.
In general, the line to thread mapping is sequential and
deterministic. If the size of the plaintext exceeds 32 lines,
then it is divided sequentially among several warps. For
example, a plaintext with 1024 lines will employ 32 warps each
executing 32 lines of the plaintext. To ensure a stronger baseline
for comparison, the AES implementation used in this paper
performs random mapping of threads to the warps (known as
input blinding) to gain additional security [5].

D. Baseline Attack and Defense Mechanism

Baseline Attack. In this work, we use the same attack model
as designed by Jiang et al. [6]. It assumes that the attacker
can send a large number of plaintexts to a remote GPU-based
AES [25]–[29] encryption server and collect the ciphertext.
The attacker also records the total execution time required to
complete each encryption. The attack was also shown to be
very effective in noisy environments [6].

Given that the GPU coalescing procedure is determinis-
tic [30] and the last round of AES is invertible [6], the attacker
can calculate the number of coalesced accesses with the help
of ciphertext and a last round key guess. As the number of
coalesced accesses is correlated with the execution time in
the baseline system [6], the key guess that leads to the best
correlation across a large number of encryptions is determined
to be the correct key. This attack further assumes that the
round tables are kept in GPU DRAM, which can be cached in
L1/L2 caches based on the access patterns. For brevity, we skip
the algorithmic details of the attack and refer readers to prior
works [5], [6]. Also, the rest of the paper assumes a stronger
attacker with the capability of accessing last round execution
time as compared to the realistic attack, which is weaker due to
the noise in the total execution time. Consequently, we assume
the goal of the attacker is to correctly guess the last round
AES encryption key [5], which can divulge all other round
keys by reverting the fixed AES key generation schedule.

Figure 3 shows the scatter plots for the baseline correlation
attack for the single-warp (plaintext with 32 lines) and multi-
warp (plaintext with 64 lines) cases. Each scatter plot shows
the correlation values for all 256 possible values for the 3rd

key byte of the last round. Each point on the scatter plot
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(b) Plaintext with 64 lines.

Fig. 3: Baseline Attack.

corresponds to a correlation value between the number of
coalesced accesses (on a per-warp basis) calculated by the
attacker and the execution time of the last round of AES-128.
In the multi-warp case, the maximum value of the number of
coalesced accesses across all warps is used as the warp that
generates the most number of coalesced accesses has shown
to dominate the total execution time [6]. From Figure 3, we
observe that the correlation value is the highest (highlighted
in red and encircled) for the correct value of the 3rd key byte
among all other guess values for the single- as well as the
multi-warp case. Therefore, the correct value of the key byte
3 is recoverable. We observe this trend for all last round key
bytes indicating successful recovery.
Baseline Defense. Kadam et al. [5] presented a series of
randomized coalescing (RCoal) mechanisms to defend against
the correlation timing attacks. They showed that randomizing
the number of subwarps, the sizes of subwarps, and the
thread elements of the subwarp can improve the GPU security,
however at the cost of performance loss and increased data
movement between SMs and memory. Based on these three
parameters, three RCoal mechanisms were proposed: fixed-
sized subwarp (FSS), random-sized subwarp (RSS), and
random-threaded subwarp (RTS). They showed that the best
performance-security trade-off can be achieved with an RCoal
mechanism (RSS+RTS+4), which uses the number of subwarps
to be 4, the sizes of warps are chosen based on a skewed
distribution, and the thread elements are chosen randomly
based on a uniform distribution. In rest of the paper, we denote
this best of the RCoal scheme as RCoal(4). Note that if the
number of subwarps is equal to the number of threads in a
warp then it is equivalent to coalescing being disabled as all
threads independently participate in the coalescing procedure.
For example, with a warp size of 32, choosing the number of
subwarps to be 32 is equivalent to disabling the coalescing. We
denote this as RCoal(32). RCoal(32) was shown to be the most
secure design as the number of coalesced access is always
constant at 32 [5]. Due to security concerns, RCoal disabled
caches and MSHRs (refer to Section III-B for more details).

Figure 4 shows the scatter plots for RCoal(32) (the most
secure mechanism) and RCoal(4) (best of RCoal) using plain-
text with 32 and 64 lines. In contrast to the baseline attack, for
RCoal(32) and RCoal(4), the correlation between the number
of coalesced accesses and execution time with the correct
key (highlighted in red and encircled) dropped significantly.
Consequently, this point is no more distinguishable among the
other correlation points ensuring successful defense against the
attack. We observe this trend for all last round key bytes.
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(a) RCoal(4) with Plaintext (32 lines).
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(b) RCoal(32) with Plaintext (32 lines).

0 63 127 191 255
Possible values for key byte 3

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
or

re
la

tio
n

(c) RCoal(4) with Plaintext (64 lines).
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(d) RCoal(32) with Plaintext (64 lines).

Fig. 4: Effect of different RCoal coalescing schemes on the
recovery of one of the last round key byte (shown in red circle). In
RCoal, the caches and MSHRs are disabled for security reasons
(refer Section III-B).

III. MOTIVATION AND ANALYSIS

Although RCoal helps in improving the GPU security
significantly, it also incurs a very high performance and data
movement overhead. To substantiate the overhead of RCoal,
Figure 5 shows the total execution time and number of DRAM
accesses for two scenarios: a) RCoal(32) – the most secure
design, and b) RCoal(4) – the best of RCoal. These results
are shown for three different sizes of plaintexts (32, 64, and
1024) and are normalized to the baseline GPU. We observe
that the overhead of RCoal(32) is very high – more than 27×
increase in the number of DRAM accesses leading to over 9.4×
increase in the execution time. Furthermore, the performance
degradation increases rapidly with the size of plaintexts. The
same trend is visible for RCoal(4) as well.
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Fig. 5: Illustrating the overhead of RCoal defense scheme for
different sizes of plaintext. The results are normalized to a
baseline GPU with MSHRs and caches.

A. Performance Overhead Analysis of RCoal

There are two major reasons behind the large performance
and data movement overhead. First, RCoal introduces sub-
optimal and randomized coalescing that causes additional
memory traffic. To understand this, we analyze the number
of coalesced accesses generated in three different architecture
options: baseline, RCoal(4), and RCoal(32). For these three
options, Figure 6 shows the number of coalesced accesses
with respect to the percentage of load instructions in the AES
CUDA implementation. We observe a bimodal distribution in
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(c) RCoal(32).

Fig. 6: Histogram of the number of coalesced accesses generated across a warp for 1000 plaintext samples each with 32 lines.

the baseline scenario (Figure 6(a)): the first peak occurs when
only one coalesced cache line access is generated for roughly
20% instructions and the second peak occur between 12-16
coalesced cache line accesses for the remaining instructions.
The first peak is observed due to the loads for the round keys
and the second peak is due to the table lookup operations. With
RCoal(32) (Figure 6(c)), the coalescing unit performs worst to
always generate 32 coalesced accesses for all load instructions.
As noted before, this is similar to the coalescing being disabled.
Although it is the most secure option, the average number of
coalesced accesses and the overall number of DRAM accesses
increase significantly (Figure 5). In RCoal(4) (Figure 6(b)), we
observe that the second peak has shifted to the right compared
to Figure 5(a) due the obfuscation of the coalescing mechanism
that generates additional memory traffic. Overall, RCoal(4)
and RCoal (32) generate additional memory traffic and incur
performance penalties to reduce the correlation between the
number of baseline coalesced accesses and the execution time.
Importantly, RCoal ignores the application properties, especially
the baseline coalescing profile to optimally generate the traffic
while reducing the correlation.

Second, due to the security reasons, RCoal schemes were
only shown to work in the absence of other bandwidth
optimization techniques, such as caches and MSHRs. The
absence of MSHRs and caches has a substantial impact on
the performance and data movement, and is well-documented
in GPU literature [22], [23], [31]. The combined effect of
sub-optimal coalescing, and absence of MSHRs and caches
leads to a sharp increase in the number of DRAM accesses
resulting in high performance degradation.

B. Effect of MSHRs and Caches on Security with RCoal
Effect of MSHRs. In the presence of MSHRs, RCoal scheme
becomes vulnerable to the correlation timing attacks. RCoal
randomizes the access coalescing and generates redundant
accesses to the same block addresses to reduce the correlation
between the execution time and the number of baseline coa-
lesced accesses. The MSHRs render RCoal scheme ineffective
by merging the redundant accesses to the same block addresses
leading to similar correlation as in the case of baseline GPU.
The effect of MSHRs on RCoal scheme is prominent for the
table lookup instructions experiencing a high cache-miss rate as
the corresponding accesses are likely served through MSHRs
leading to predictable access merging. This is especially true
for the initial table lookup instructions of the last round
because T4 table elements are less likely cached. Figure 7
shows this merging-back phenomenon using the example from

Figure 2. RCoal(4) generated 4 accesses A , including one
redundant access. However, MSHRs merged back the cache-
missed accesses, leading to the same number of accesses
( B ) generated to the DRAM as that of in the baseline case.
Consequently, it leads to the same correlation and information
leakage as that of the baseline GPU.
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Fig. 7: Effect of MSHRs on the cache-missed coalesced accesses
in RCoal scheme.

Effect of caches. The security of RCoal depends on the
cache hit rates. For example, in the case of RCoal(32), if
all accesses of a table lookup instruction are always cached,
then all 32 accesses from the coalescing unit are served by the
cache. Therefore, if the execution time remains constant due
to the constant number of accesses to the cache, the attacker
cannot establish the correlation between the number of baseline
coalesced accesses and the execution time to reveal the private
key. However, a perfect cache hit rate cannot be guaranteed
for all the table lookup instructions across a large number of
plaintext samples. Therefore, if the accesses of a table lookup
instruction miss in the cache, the key byte can still be recovered
with RCoal due to the access merging in MSHR as discussed
earlier. To illustrate this point, Figure 8 shows the scatter plots
for the first table lookup instruction of the last round with
MSHRs and caches enabled. We note that the private key byte
3 corresponding to the first table lookup instruction can easily
be recovered in both the RCoal scenarios.

In summary, RCoal becomes vulnerable due to the access
optimizations in MSHRs and caches.

C. Our Proposal and Goals

Our goal is to design a mechanism that reduces the
performance overheads of RCoal while offering comparable
security. To this end, we propose BCoal: a bucketing-based coa-
lescing mechanism to address the primary performance-related
shortcomings of RCoal discussed before. BCoal matches the
number of coalesced accesses generated for a global memory
load instruction per warp to one of the predetermined values
(denoted as buckets). To match the number of accesses to one
of the preset bucket sizes, we pad the real coalesced accesses
from a warp with additional (padded) memory accesses. Since
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(a) RCoal(32) + MSHRs + Caches.
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(b) RCoal(4) + MSHRs + Caches.

Fig. 8: The presence of MSHRs and caches leads to successful
recovery of one of the last round key bytes in RCoal(32) and
RCoal(4). Plaintext has 32 lines.

the total numbers of accesses always match one of the bucket
sizes, their overall variance decreases. Furthermore, as observed
earlier for RCoal, MSHRs adversely affect the security by
merging the redundant accesses after randomized coalescing.
Therefore, the padding mechanism in BCoal is devised such
that MSHRs cannot merge the real and padded accesses, thereby
maintaining a very low variance in the resulting number of
accesses. Additionally, the padding mechanism ensures that
the real and padded accesses follow similar access merging
and caching pattern, such that they affect the execution time at
the same rate. Subsequently, the individual effects of real and
padded accesses on the execution time are indistinguishable.
Therefore, in BCoal-enabled GPU, the attacker will not be able
to correlate the number of real coalesced accesses with the
observed execution time. Consequently, the security offered by
BCoal scheme against the correlation timing attacks remains
intact even in the presence of MSHRs and caches. In summary,
BCoal scheme presented in this work not only offers improved
security but also incurs minimal performance degradation as
compared to RCoal.

IV. ANATOMY OF BUCKETING IN GPUS

In this section, we first explain our general approach towards
realizing a bucketing scheme and then explore the design
challenges in meeting the bucketing requirements in the
presence of MSHRs and caches. Finally, based on our analysis,
we present our secure bucketing scheme – BCoal.

A. Bucket Features

Let us assume a system with n buckets and sizes of buckets
to be: b1,..,bi, bi+1,...,bn where ∀i : bi < bi+1. A predetermined
number of coalesced accesses are generated per table lookup
(load) instruction as per the bucket size. If a load instruction
generates n number of coalesced accesses, where bi < n ≤ bi+1,
then additional accesses are padded such that the total number
of coalesced accesses is equal to bi+1. The number of buckets
is selected to achieve the desired reduction in the variance of
the number of coalesced accesses. For example, with only one
bucket, the number of accesses generated is always equal to
the size of that bucket, thus, reducing the variance to zero. As
the number of buckets increases, the variance in the number of
coalesced accesses increases due to the increased number of
distinct possible values for the coalesced accesses. This leads
to higher information leakage, however, also reduces the total
number of additional padded accesses.

We revisit Figure 6(a) to select the bucket features for AES.
We observe that the number of coalesced accesses during the
AES encryption on GPU never exceeds 16. Therefore, we
select the size of the bucket to be 16 as one of the options
and denote the scheme as BCoal(16). With only one bucket
of size 16 in the coalescing unit, the AES encryption will
always generate 16 number of coalesced accesses to reduce
their variance to 0. Consequently, the correlation between the
number of real coalesced accesses and the execution time drops
as well. However, with only one bucket, each (security-sensitive
and security-insensitive) load instruction sends 16 accesses,
leading to performance degradation (Section VI).

The performance of BCoal scheme can be further improved
by adding multiple buckets of intermediate sizes. We propose
to add one more bucket with size 1 because of the bi-modal
distribution observed in Figure 6(a) and call this scheme
BCoal(1, 16). The performance degradation in BCoal(1, 16)
will be lower than in BCoal(16) because the coalesced accesses
generated by instructions other than the table lookups (the first
peak in Figure 6(a)) now fit into the added bucket. Furthermore,
in BCoal(1, 16), as the bucket with size 1 does not affect the
table lookup instructions, its effect on the security is minimum.
We quantify all performance and security results in Section VI.

B. Estimation of Number of Padded Accesses

To generate an optimal number of padded memory accesses
for bucketing, we first need to determine the number of real
memory accesses generated for a load instruction of a warp.
The number of real coalesced accesses generated by the load
instruction is stored as the pending request count (PRC) in the
coalescing unit [30]. By reading PRC, we determine the number
of real memory accesses. Next, we compare the number of
real memory accesses generated with the preset bucket values.
If the number of real memory accesses does not match, then
we generate a number of padded memory accesses equal to
the difference between the next larger bucket value and the
number of real memory accesses. For example, in BCoal(1,16),
if the number of original memory accesses is 12, then we need
to generate 4 extra memory accesses.

C. Design Challenges in Generating Padded Accesses

We consider the effect of MSHRs and caches on RCoal
scheme while designing the padding mechanism for BCoal. In
RCoal, the redundant accesses to the same block addresses
were merged in MSHRs eliminating the security offered by
randomized coalescing of accesses. Therefore, to meet the
bucketing requirement, we must generate padded accesses to
the unique block addresses. Consequently, all memory accesses
originating from a warp, real and padded, have unique block
addresses. The unique accesses for padding are generated
randomly from an address range that is accessible to the AES
CUDA application. In our case, the block address range spans
over the five tables used for table lookups and the round keys
used for each round, all saved in the DRAM.

To evaluate the resulting bucketing scheme, we first deter-
mine the possibility of key byte recovery in the absence of
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(a) Without MSHRs and caches.
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(b) With MSHRs and caches.

Fig. 9: Evaluation of security offered by the bucketing scheme
employing unique access padding mechanisms with one bucket
of size 16. Plaintext has 32 lines.

MSHRs and caches. Figure 9a shows the scatter plots for the
bucketing scheme employing padding via unique accesses in
the absence of MSHRs and caches. We note that the correct
value of the key byte cannot be recovered as the attacker fails
to establish a correlation between the real number of accesses
and the execution time. The low correlation is attributed to
the constant number of accesses generated per table lookup
instruction across the plaintext samples leading to the low
variance in them.

From the above padding mechanisms employed in the
bucketing scheme, we make the following observation:

Observation I: For the secure bucketing scheme, the block
addresses of the padded accesses should be random and unique
(that is, exclusive of the block addresses of the real and other
padded accesses of the corresponding table lookup instruction).

Effect of MSHRs and caches. We evaluate the effect
of MSHRs and caches on the security of above bucketing
mechanism using the scatter plot in Figure 9b. We note that
while the correlation and related key byte value leakage is low,
the correct value of the key byte can still be recovered. The
key byte value leakage is possible because the real and padded
accesses affect the execution time at different rates due to their
distinct merging and caching patterns.

The distinct access merging and caching patterns are caused
because of the different block address ranges accessed by the
real and padded accesses. In the above bucketing scheme, the
padded accesses generated in each round access the same range
of block addresses spread across the entire memory space of the
AES CUDA application. In contrast to the padded accesses, in
the last round, the real accesses target only the T4 table elements.
As the real accesses are confined to a narrower address space
(only T4 table elements) as compared to the padded accesses
(entire application memory space), their respective merging and
caching patterns are different. Therefore, the padded and real
accesses affect the execution time at different rates. An attacker
can then treat the effect of padded accesses on the execution
time as noise and filter it out over a large number of plaintext
samples to correlate the real accesses and the execution time to
recover the private key. The effect of MSHRs and caches on the
real and padded accesses leads to the following observation:

Observation II: The padded and real accesses should be
homogeneous in terms of their respective probabilities of
merging in MSHRs and caching.

D. BCoal: A Secure Bucketing Scheme

From the observations I and II recorded previously, we note
that for a secure bucketing scheme to operate in the presence
of MSHRs and caches, the padded accesses should have the
following two characteristics: i) the block addresses of the
padded accesses should be random and exclusive (unique) of
the block addresses of the other accesses and ii) the padded
accesses should follow the same merging and caching pattern
as that of the real accesses.
Padding via Homogeneous Unique Accesses. The first prop-
erty of the desired padding mechanism is met by ensuring
that the block addresses of the padded accesses are random
and unique across each security-sensitive load instruction. To
enforce the second property, we recall the merging mechanism
in MSHRs, where the accesses going to the same block
addresses are merged together. Furthermore, the caching also
works at the block address granularity. Therefore, to obtain
similar merging and caching probabilities across all accesses,
we restrict the block addresses of the padded accesses to the
range of possible block addresses of the real accesses, thereby
generating homogeneous unique accesses.2

During the AES execution, the table lookup instructions
of the first nine rounds access first four tables, while for the
last round only T4 table is accessed. Therefore, to meet the
bucketing requirements, the padding mechanism should restrict
the block address range of the padded accesses to the block
address range of the first four tables in DRAM during the
first nine rounds, while to the block address range of T4 table
in DRAM during the last round. As the padding mechanism
maintains similar merging and caching properties for the real
and the padded accesses, the attacker cannot segregate their
effects on the total execution time. Therefore, the attacker will
fail to establish the correlation between the real number of
coalesced accesses and the execution time, thereby failing to
recover the key byte value. Furthermore, as all rounds of AES
encryption are potentially vulnerable to timing attacks [32],
BCoal is enabled for all ten rounds of AES.

In summary, we select the padding via homogeneous unique
accesses for the BCoal bucketing scheme. We present the
security and performance evaluation of the proposed BCoal
scheme with MSHRs and caches enabled in Section VI.

V. HARDWARE/SOFTWARE OVERHEAD

In this section, we describe the implementation overhead
of BCoal. We consider a generalized BCoal scheme, which
targets a security-sensitive application with an arbitrary number
of program sections. For example, the two program sections in
AES are the first 9 rounds and the last round. The generated
padded accesses have memory addresses that target respective
program sections.

Storage overhead. The storage requirement is for keeping
track of a) bucket sizes and b) the start/end addresses of the
program sections. To store the buckets sizes, BCoal uses a

2This heuristic may have to be tuned for different applications based on
their memory access pattern.
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32-bit mask that covers all 32 possible number of coalesced
accesses across a warp. The indices of the mask are set as per
the BCoal configuration. For example, for BCoal(1, 16, 32),
only 1st , 16th and 32nd bits are set. Next, BCoal maintains an
address table – accessible by all SMs executing the security-
sensitive application – to save the start and end 32-bit addresses
of each program section. For an application with N program
sections, the size of the table will be (2N×32) bits. For AES
with 2 program sections, the size of the table will be 128 bits
and the total storage overhead is 128+32 = 160 bits.

Address Generation. The generation of unique homoge-
neous accesses for padding follows three steps: a) determine
the number of padded accesses needed, b) determine the unique
homogeneous block addresses for the accesses, and c) generate
the accesses. As noted in Section IV-B, the pending request
count (PRC) in the memory coalescing unit (MCU) records the
number of real accesses across a warp. Therefore, the number
of padded accesses needed can be identified by comparing
the size of a bucket with PRC. Since the maximum value of
PRC (limited by the maximum possible number of coalesced
accesses) and the maximum size of a bucket is 32, BCoal
needs a 5-bit comparator.

The address range for each program section is known from
the memory allocation and data copy operations executed at
the start of a GPGPU application. This information can also be
embedded in the load instructions. To generate padded accesses
in the range of the program section under execution, BCoal
uses a 32-bit random address generator.

VI. ANALYSIS OF SECURITY & PERFORMANCE

In this section, we first analyze the security of our proposed
bucketing-based coalescing mechanism, BCoal, via experimen-
tal and theoretical analysis. Subsequently, we discuss the effects
of the proposed mechanism on performance and data movement.
We also compare BCoal with RCoal in terms of security,
performance and data movement. Finally, we generalize our
mechanism across a wide range of GPGPU applications.

All the results are collected on a cycle-level GPU simulator
– GPGPU-Sim [22]. We assume the same number of samples
as that of in the attack scenario [5] for plaintext with 32 lines.
For plaintext with 64 lines, we use 1000 samples, the same
number as needed for the successful attack, to evaluate the
defense mechanism for a fair comparison.

A. Experimental Analysis of Security

For the security evaluation of BCoal scheme in the presence
of MSHRs and caches, we consider two configurations: i)
default with one bucket of size 16 denoted as BCoal(16) and
ii) performance efficient with two buckets of sizes 1 and 16
denoted as BCoal(1, 16). For each BCoal configuration, we
plot a scatter plot as explained in Section II-D.
Plaintext with 32 lines. Figure 10 shows the scatter plots for
BCoal scheme using plaintext with 32 lines with MSHRs and
caches enabled. We note that the key byte recovery is not
possible because of the low correlation between the number
of accesses and the execution time. The low correlation can
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(b) BCoal(1, 16)+MSHRs+Caches.

Fig. 10: BCoal defense scheme against correlation attack for
plaintext with 32 lines.
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(b) BCoal(1, 16)+MSHRs+Caches.

Fig. 11: BCoal defense scheme against correlation attack for
plaintext with 64 lines.

be explained as follows. With BCoal scheme, three scenarios
can occur for a table lookup instruction. First, all accesses
– real and padded – for the instruction are cached. In this
case, the instruction always generates 16 accesses to the
cache. Second, no accesses are cached, therefore, generating 16
DRAM accesses to the unique block addresses which MSHRs
cannot optimize. In both scenarios, the number of accesses
to the cache or DRAM remains constant leading to reduced
correlation with the execution time. In the third case, a partial
set of accesses of the instruction are either cached or merged
in MSHR. Here, since the real and the padded accesses target
the same block address range, their merging and caching
probabilities are similar. Subsequently, the attacker cannot
distinguish between the effects of the padded and real accesses
on the execution time and fails to correlate the number of real
coalesced accesses and the execution time. In conclusion, the
attacker fails to recover the key byte in a BCoal-enabled GPU.
Plaintext with 64 lines. Figure 11 shows the scatter plots for
BCoal scheme using plaintext with 64 lines with MSHRs and
caches enabled. We note that the key byte recovery is not
possible because of the low correlation between the number
of accesses and the execution time. To understand the low
correlation, we refer to the correlation timing attack described
by Jiang et al. in [6] for the multi-warp case, where the attacker
treats each warp individually executing a plaintext with 32 lines
and chooses the warp with the highest number of coalesced
accesses to recover the key. Therefore, the observations made
for a single warp case hold true for the multi-warp case as
well. Particularly, the attacker cannot correlate the number
of real coalesced accesses and the execution time due to the
low variance in the number of accesses, and the homogeneity
between the real and padded accesses. Therefore, the attacker
fails to recover the key byte value in the multi-warp scenario.

The experimental analysis concludes that BCoal-enabled
GPU successfully mitigates the correlation timing attacks in
single-warp and multi-warp scenarios.
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B. Theoretical Analysis of Security

We present an analytical framework to analyze the security of
AES. Before a formal analysis, we consider one instruction in
the last round that accesses 12 unique memory block addresses
before padding. When only one bucket is used (at 16), the 4
padded memory accesses are drawn from the same memory
space as the 12 real requests. Hence, there is no information
leakage. In general, we will shortly prove that when BCoal
uses one bucket at 16, there is no information leakage.

When multiple buckets are used, say at 12 and 16, the
attacker can infer if the number of real block addresses being
accessed are up to 12 or between 12 and 16, which leaks some
information. However, as we show next, the leakage in general
is minimal, due to the randomized mapping from plaintext
lines to warps. The randomized mapping obfuscates which
plaintext lines share the same warp.

To quantify the leakage of BCoal, we note that threads
across different warps are not synchronized and the longest
warp execution time dominates the time measurement [6].
Hence, one of the warps, the dominant warp, will have true
timing. Known attacks on multiple warps [6] analyze each warp
and use the longest running (dominant) warp for correlation
analysis to recover the AES private keys. So it is safe to focus
on an arbitrary warp in the rest of the analysis. Moreover,
we assume the padded and real accesses are homogeneous
(as described in Section IV-B). Hence, their probabilities of
merging in MSHRs and caching are identical.

To make a fair comparison with RCoal, we follow the
analytical model and assumptions of RCoal [5]. Futher, we
target an arbitrary last-round key byte k and assume that U is
the number of real accesses for the lookup of last round table,
T4, with respect to the key byte k, from the dominant warp.
Following RCoal [5], we estimate the number of plaintext
samples required to successfully recover an AES key byte, S,
as

S ∝
(µ(U×Û)−µ(U)µ(Û)

σ(U)σ(Û)

)−2 (1)

where Û is the number of coalesced accesses when the guessed
key byte is identical to k, µ and σ are the mean and standard
deviation of a random variable respectively.

We first prove BCoal leaks no information with one bucket.

LEMMA 1. When BCoal only uses one bucket at 16, the needed
samples to break AES is infinite.

PROOF. With only one bucket, P(Û = 16|U = u) = 1 for any
u. Hence, µ(Û) = 16 and µ(U ×Û) = ∑u P(u)µ(U ×Û |U =
u) = 16∑u u×P(u) = 16µ(U). Hence S = (0)−2 = ∞.

When the number of buckets is more than one, the compu-
tation is more involved. To simplify the analysis, we further
make a conservative assumption that an attacker may directly
observe the unpadded memory blocks in the following analysis.
Therefore, µ(Û) = µ(U),σ(Û) = σ(U).

In AES, the lookup table relevant to key byte k has 16 unique
memory block addresses. With sufficiently random plaintexts

TABLE II: Security Analysis. S denotes the normalized number
of samples required to successfully recover an AES key byte [5].

Schemes Correlation ρ (normalized) S
RCoal(4) 0.15 42×

RCoal(32) 0.00 ∞

BCoal(16) 0.00 ∞

BCoal(1,16) 0.16 37×

and a warp with 32 threads, each thread accesses one of 16
memory block addresses in a uniform way. Hence, the number
of unique block addresses U , obeys the following distribution:
P(U = i) = 1

1632
16!

(16−i)!

{32
i

}
, where

{32
i

}
denotes the Stirling

number of the second kind. Here,
{32

i

}
represents the ways

of partitioning 32 threads into i non-empty subsets; 16!
(16−i)! ,

i-permutations of 16, represents the ways of forming i non-
empty subsets from 16 memory block addresses. From this
distribution, we can compute both µ(U) and σ(U) by their
definitions.

To compute µ(U × Û), we note that due to the random
mapping from plaintext lines to warps, U and Û only depend
on the frequency of accessing the 16 memory block addresses
among the 64 lines of plaintext, which is defined as follows.

Definition 1. For 16 memory blocks and 64 plaintext lines, the
frequency set of all possible accesses to the block addresses
are

F = {( f1, . . . , f16) | f1 + · · ·+ f16 = 64}

where fi ∈F represents the frequency of accessing the i-th
memory block address among the 64 plaintext lines.

Given F ∈F , µ(U |F) = ∑ fi∈F µ(1block i is accessed| fi), where
1block i is accessed is an indicator random variable that has value
1 if block address i is being accessed in the dominating warp.
Given fi accesses to block address i, the probability that it is
accessed in the dominating warp is (1−C64−32

fi
/C64

fi ), where
Cm

n denotes the binomial coefficient. Hence,

µ(U |F) = ∑
fi∈F

1−C32
fi /C64

fi

Given F ∈F , U and Û are independently and identically
distributed. Hence,

µ(U×Û) = ∑
F∈F

P(F)µ(U |F)2 = ∑
F∈F

P(F)
(

∑
fi∈F

1−
C32

fi

C64
fi

)2

Here, P(F) is the probability of seeing the frequency vector
F . Among all 1664 combinations of memory accesses from 64
threads, C64

f1
C64− f1

f2
· · ·C64−∑1≤ j≤15 f j

f16
= (64)!

Π fi∈F fi!
match F . Hence,

we have P(F) = (64)!
Π fi∈F fi!

× 1
1664 .

Putting all pieces together, we use a Python script to compute
the correlation and normalized the sample size needed for a
successful attack, similar to the RCoal analysis [5]. The results
are summarized in Table II. We note that with 1 bucket, BCoal
rules out leakage entirely. With multiple warps, its security
is comparable with RCoal(4), the best of the RCoal schemes.
Note that the results of RCoal in Table II only applies when
MSHR and caches are disabled. But with homogeneous padded
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and real accesses, the results of BCoal also applies even if
MSHR and caches are enabled.

In summary, this theoretical security analysis demonstrates
that when MSHR and caches are disabled, both RCoal
and BCoal schemes provide significant security against the
correlation timing attack. However, if the MSHRs and caches
are enabled, RCoal becomes vulnerable due to the access
merging and caching as illustrated in Figure 8. In contrast to
RCoal, BCoal has high security even in the presence of MSHRs
and caches as shown both in Table II and in Section VI-A.

C. Experimental Analysis of Performance

To evaluate the performance and scalability of BCoal scheme
against RCoal, we plot the execution time and number of
DRAM accesses in Figure 12 for plaintext with 32, 64 and 1024
lines. We first demonstrate the effect of different coalescing
strategies in BCoal and RCoal by comparing them in the
absence of MSHRs and caches in Figure 12a. We note that
the number of DRAM accesses increases sharply with the
plaintext size in RCoal as compared to BCoal due to the
inefficient access coalescing in RCoal. Consequently, RCoal
suffers severe performance degradation as compared to BCoal
as the plaintext size increases.
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Fig. 12: Performance of BCoal for different plaintext sizes. All
results are normalized to the baseline GPU.

Figure 12b demonstrates the effect of MSHRs and caches
on the performance of BCoal and RCoal. Both schemes show
a significant reduction in the DRAM traffic leading to reduced
performance degradation. However, in the presence of MSHRs
and caches, RCoal is insecure (Section III-B) and BCoal is
secure (Section VI-A and VI-B). For BCoal, the performance
degradation is limited to 5% and 15% for BCoal(1, 16) and
BCoal(16), respectively. In summary, the performance of BCoal
(with MSHRs and caches) scales well with the plaintext size
as opposed to secure RCoal (without MSHRs and caches).

D. Evaluating BCoal on Other Applications

We evaluate BCoal on a wide range of applications from
various suites such as CUDA-SDK (C) [33], Rodinia (R) [34],
Lonestar (L) [35], Mars (M) [36], Shoc (S) [37] and Polybench
(P) [38]. For these applications, we evaluate only the perfor-
mance of BCoal, as the bucketing driven reduced variation in

the number of coalesced accesses ensures improved security.
The address range of the padded accesses is spread over the
entire memory space of the respective application. We examine
the effects of the number and sizes of buckets on the application
performance using Figure 13. The MSHRs and caches are
enabled for the evaluation.

Number of buckets. In Figure 13, the first two configurations
of BCoal, BCoal(1, 16, 32) and BCoal(1, 32), demonstrate the
effect of the number of buckets on various applications. Both
configurations have a bucket of size 1 to reduce the DRAM
traffic in applications that exhibit perfect coalescing (i.e, all
threads in a warp are served by a single cache block at a given
time). We notice that most applications are unaffected by the
number of buckets, as they can leverage the bucket of size 1
through good coalescing profiles.

In C-CONS and C-NN, the number of DRAM accesses
increase in BCoal(1, 32) as the number of coalesced accesses
between 2 to 31 are padded to meet the bucket 32. The
increased number of accesses in combination with high cache-
misses results in increased DRAM traffic leading to increased
performance degradation. In C-TRA, P-CORR and P-COVAR,
although the number of DRAM accesses does not change
drastically, the execution time increased in BCoal(1, 32) over
BCoal(1, 16, 32). The increase in execution time is attributed
to the increase in the number of L1 cache accesses in BCoal(1,
32) as it lacks the bucket of size 16. The increased L1 accesses,
even if cached (thus leading to fewer DRAM accesses), are
satisfied serially thereby increasing the execution time.

Sizes of buckets. BCoal(1, 32) and BCoal(16, 32) demonstrate
the effect of bucket sizes on various applications. We noticed
that the performance degradation is severe for BCoal(16, 32)
compared to BCoal(1, 32) due to the increased number of
DRAM accesses in BCoal(16, 32). In BCoal(16, 32), the
smallest bucket size is 16, therefore all applications, even the
ones with good coalescing profiles, generate at least 16 DRAM
accesses for each memory access instruction. Subsequently,
the number of DRAM accesses increase resulting in increased
performance degradation.

In summary, we observe that the application performance is
more affected by the sizes of buckets than the number of buckets.
A careful bucket size selection can reduce the number of padded
requests thereby reducing the overall data movement.

A Generic BCoal configuration. From Figure 13, we note that
BCoal(1, 16, 32) configuration results in only 1.15% average
performance loss. The security and performance of AES with
BCoal(1, 16, 32) is identical to BCoal(1, 16) because the
bucket of size 32 in BCoal(1, 16, 32) is never used as the
baseline number of coalesced accesses never exceed 16 as
shown in Figure 6a. Therefore, BCoal(1, 16, 32) can be widely
adopted as it offers good security at a minimal performance loss.
However, for optimal security and performance tradeoff, a user
can perform application-specific offline profiling of coalesced
accesses (discussed in Section III) to determine appropriate
bucket features.
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Fig. 13: Performance Evaluation of BCoal on GPGPU applications with MSHRs/caches enabled. Results are normalized to the
baseline GPU.

VII. RELATED WORK

In this section, we highlight the prior works that are the
most relevant to this paper.
Attacks. Implementations of cryptographic systems on CPUs
are vulnerable to timing attacks. Several AES implementations
contain key-dependent memory accesses, which eventually
affect the status of the data cache. Via cache-probing technique,
an attacker can quickly recover the entire private key of
AES and RSA by measuring the execution time of either
a cryptographic algorithm (e.g., [32], [39]–[42]) or his/her
own application if the data or instruction cache is shared
(e.g., [42]–[45]). On GPUs, Jiang et al. [6] demonstrated a
novel complete AES key recovery timing attack that exploits
the coalescing features on a commercial GPU architecture
(discussed in Section II-D). They also developed a new fine-
grained timing channel caused by shared memory bank conflicts
in GPUs [21]. Wang et al. [46] developed partial attacks against
RCoal [5] focusing on the configurations with high variance
in the number of coalesced accesses. Our BCoal mechanism
further reduces the variance making it a much stronger defense.
Defense mechanisms. Several hardware-based defense mech-
anisms have been proposed in the context of CPUs [13]–[15],
[47]–[50]. However, those mechanisms have been shown to
work only for cache-based timing attacks and not for GPU
coalescing-related vulnerabilities. The memory traffic shaping
schemes to mitigate the timing attacks in CPUs have been
extensively explored [51]–[53]. With the help of fake/dummy
access generation mechanism, these schemes enforce the
memory traffic to follow either a constant rate or a pre-
determined distribution over a time epoch. These schemes
differ from BCoal in two ways. First, BCoal works at a finer
instruction-level granularity to shape the memory traffic. The
single-instruction multiple-thread (SIMT) execution model of
GPUs allows parallel thread memory access generation across
a warp, which is leveraged by BCoal to estimate and generate
padded accesses for each sensitive instruction. Second, BCoal

ensures that the real and padded accesses are to the same
memory space, which helps in making their individual effects
on execution time similar. This makes it harder for the attacker
to distinguish padded accesses from the real accesses.

Lin et al. [54] proposed new software-based mechanisms
specific to AES for reducing the information leakage due to co-
alescing units. On the other hand, BCoal is a generic hardware-
based coalescing mechanism applicable to all security-sensitive
GPGPU applications that are vulnerable to coalescing-based
correlation timing attacks. This also makes BCoal complemen-
tary to other software-based implementations of cryptographic
workloads. Köpf et al. [55] ensures that the execution time
matches one of the discrete bucket values, while BCoal ensures
the number of memory accesses generated per load instruction
conform to a predefined set of values, that is buckets. Further,
buckets in the prior work [55] assumes input blinding for a tight
leakage bound. In BCoal, we utilize the inherent parallelism
in GPUs to randomize the mapping from inputs to threads,
achieving a similar blinding effect for arbitrary applications.

VIII. CONCLUSIONS

We propose a bucketing-based coalescing scheme (BCoal) to
thwart the coalescing-based correlation timing attack without
incurring high performance overhead. The key insight is to
redesign GPU memory coalescing such that it always issues a
pre-determined number of memory accesses (called buckets).
Our modified coalescing unit generates additional memory
accesses (if necessary) along with the real accesses to match
the bucket requirements. These additional padded accesses
reduce the variance in the total number of coalesced accesses
to significantly enhance the security. BCoal carefully generates
padded accesses such that they have similar caching/merging
probability as that of the real accesses. Such a mechanism
significantly helps in retaining the security even in the presence
of the MSHRs and caches. In conclusion, we believe that BCoal
addresses the memory coalescing related vulnerability in GPUs
while incurring low performance overhead.

11



ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
and the members of Insight Computer Architecture Lab at
William & Mary for their feedback. This material is based
upon work supported by the National Science Foundation (NSF)
grant #1717532 and a summer research grant from William
& Mary. This work was performed in part using computing
facilities at William & Mary.

REFERENCES

[1] NVIDIA, “Parabricks.” [Online]. Available: https://blogs.nvidia.com/
blog/2018/09/05/parabricks-genomic-analysis/

[2] NVIDIA, “Computational finance.” [Online]. Available: https://www.
nvidia.com/en-us/gtc/topics/finance/

[3] W. Hua, Z. Zhang, and G. E. Suh, “Reverse Engineering Convolutional
Neural Networks Through Side-channel Information Leaks,” in DAC,
2018.

[4] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
“Rendered Insecure: GPU Side Channel Attacks are Practical,” in CCS,
2018.

[5] G. Kadam, D. Zhang, and A. Jog, “RCoal: Mitigating GPU Timing Attack
via Subwarp-based Randomized Coalescing Techniques,” in HPCA, 2018.

[6] Z. H. Jiang, Y. Fei, and D. Kaeli, “A complete key recovery timing
attack on a GPU,” in HPCA, 2016.

[7] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted Execution
Environments on GPUs,” in OSDI, 2018.

[8] G. Liu, H. An, W. Han, G. Xu, P. Yao, M. Xu, X. Hao, and Y. Wang, “A
program behavior study of block cryptography algorithms on GPGPU,”
in FCST, 2009.

[9] T. Cheneau, A. Boudguiga, and M. Laurent, “Significantly improved
performances of the cryptographically generated addresses thanks to
ECC and GPGPU,” computers & security, vol. 29, 2010.

[10] S. Neves and F. Araujo, “On the performance of GPU public-key
cryptography,” in ASAP, 2011.

[11] K. Jang, S. Han, S. Han, S. Moon, and K. Park, “SSLShader: Cheap
SSL Acceleration with Commodity Processors,” in NSDI, 2011.

[12] Z. Wang and R. B. Lee, “Covert and side channels due to processor
architecture,” in ACSAC, 2006.

[13] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in ISCA, 2007.

[14] Z. Wang and R. B. Lee, “A Novel Cache Architecture with Enhanced
Performance and Security,” in MICRO, 2008.

[15] F. Liu and R. B. Lee, “Random Fill Cache Architecture,” in MICRO,
2014.

[16] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. Lee, “Last-Level Cache
Side-Channel Attacks are Practical,” in S&P, 2015.

[17] M. K. Qureshi, “New Attacks and Defense for Encrypted-address Cache,”
in ISCA, 2019.

[18] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are Coherence Protocol
States Vulnerable to Information Leakage?” in HPCA, 2018.

[19] H. Naghibijouybari, K. N. Khasawneh, and N. Abu-Ghazaleh, “Con-
structing and characterizing covert channels on GPGPUs,” in MICRO,
2017.

[20] Q. Xu, H. Naghibijouybari, S. Wang, N. B. Abu-Ghazaleh, and
M. Annavaram, “GPUGuard: mitigating contention based side and covert
channel attacks on GPUs,” in ICS, 2019.

[21] Z. H. Jiang, Y. Fei, and D. Kaeli, “A Novel Side-Channel Timing Attack
on GPUs,” in VLSI, 2017.

[22] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in ISPASS,
2009.

[23] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir,
O. Mutlu, R. Iyer, and C. R. Das, “OWL: Cooperative Thread Array
Aware Scheduling Techniques for Improving GPGPU Performance,” in
ASPLOS, 2013.

[24] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer,
and C. R. Das, “Orchestrated Scheduling and Prefetching for GPGPUs,”
in ISCA, 2013.

[25] F. P. Miller, A. F. Vandome, and J. McBrewster, Advanced Encryption
Standard. Alpha Press, 2009.

[26] O. Harrison and J. Waldron, “AES Encryption Implementation and
Analysis on Commodity Graphics Processing Units,” in CHES, 2007.

[27] K. Iwai, T. Kurokawa, and N. Nisikawa, “AES Encryption Implementation
on CUDA GPU and Its Analysis,” in ICNC, 2010.

[28] N. Nishikawa, K. Iwai, and T. Kurokawa, “High-Performance Symmetric
Block Ciphers on CUDA,” in ICNC, 2011.

[29] Q. Li, C. Zhong, K. Zhao, X. Mei, and X. Chu, “Implementation and
analysis of AES encryption on GPU,” in HPCC-ICESS, 2012.

[30] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch: Enabling Energy Optimizations
in GPGPUs,” in ISCA, 2013.

[31] A. Sethia, D. A. Jamshidi, and S. Mahlke, “Mascar: Speeding up GPU
warps by reducing memory pitstops,” in HPCA, 2015.

[32] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of AES,” CT-RSA, 2006.

[33] NVIDIA, “CUDA C/C++ SDK Code Samples,” 2011. [Online].
Available: http://developer.nvidia.com/cuda-cc-sdk-code-samples

[34] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Computing,”
in IISWC, 2009.

[35] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular
programs on GPUs,” in IISWC, 2012.

[36] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: A
MapReduce Framework on Graphics Processors,” in PACT, 2008.

[37] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford,
V. Tipparaju, and J. S. Vetter, “The Scalable Heterogeneous Computing
(SHOC) benchmark suite,” in GPGPU, 2010.

[38] L.-N. Pouchet, “Polybench: the polyhedral benchmark suite,” 2012.
[Online]. Available: http://web.cs.ucla.edu/∼pouchet/software/polybench/

[39] D. J. Bernstein, “Cache-timing attacks on AES,” cr.yp.to/papers.html#
cachetiming, 2005.

[40] J. Bonneau and I. Mironov, “Cache-collision timing attacks against AES,”
in CHES, 2006.

[41] A. Bogdanov, T. Eisenbarth, C. Paar, and M. Wienecke, “Differential
Cache-Collision Timing Attacks on AES with Applications to Embedded
CPUs,” in CT-RSA, 2010.

[42] D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games—Bringing
Access-Based Cache Attacks on AES to Practice,” in S&P, 2011.

[43] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-channel Attack,” in USENIX Security, 2014.

[44] G. Irazoqui, M. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute! A
fast, cross-VM attack on AES,” in RAID, 2014, pp. 299–319.

[45] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-Tenant
Side-Channel Attacks in PaaS Clouds,” in CCS, 2014.

[46] X. Wang and W. Zhang, “Cracking Randomized Coalescing Techniques
with An Efficient Profiling-Based Side-Channel Attack to GPU,” in
HASP, 2019.

[47] D. Page, “Partitioned cache architecture as a side-channel defense
mechanism,” in Cryptology ePrint Archive, Report 2005/280, 2005.
[Online]. Available: http://eprint.iacr.org/2005/280.pdf

[48] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam, R. Kastner,
T. Sherwood, B. Hardekopf, and F. T. Chong, “Sapper: A language for
hardware-level security policy enforcement,” in ASPLOS, 2014.

[49] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A Hardware Design
Language for Timing-Sensitive Information-Flow Security,” in ASPLOS,
2015.

[50] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure Hierarchy-Aware
Cache Replacement Policy (SHARP): Defending Against Cache-Based
Side Channel Atacks,” in ISCA, 2017.

[51] Y. Zhou, S. Wagh, P. Mittal, and D. Wentzlaff, “Camouflage: Memory
traffic shaping to mitigate timing attacks,” in HPCA, 2017.

[52] C. W. Fletchery, L. Ren, X. Yu, M. Van Dijk, O. Khan, and S. De-
vadas, “Suppressing the Oblivious RAM timing channel while making
information leakage and program efficiency trade-offs,” in HPCA, 2014.

[53] S. Aga and S. Narayanasamy, “InvisiMem: Smart Memory Defenses for
Memory Bus Side Channel,” in ISCA, 2017.

[54] Z. Lin, U. Mathur, and H. Zhou, “Scatter-and-Gather Revisited: High-
Performance Side-Channel-Resistant AES on GPUs,” in GPGPU, 2019.
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