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Abstract—Graphics Processing Units (GPUs) use caches to
provide on-chip bandwidth as a way to address the memory wall.
However, they are not always efficiently utilized for optimal GPU
performance. We find that the main source of this inefficiency
stems from the tightly-coupled design of cores with L1 caches.
First, such a design assumes a per-core private local L1 cache
in which each core independently caches the required data. This
allows the same cache line to get replicated across cores, which
wastes precious cache capacity. Second, due to the many-to-few
traffic pattern, the tightly-coupled design leads to low per-core
L1 bandwidth utilization while L2/memory is heavily utilized.

To address these inefficiencies, we renovate the conventional
GPU cache hierarchy by proposing a new DC-L1 (DeCoupled-
L1) cache – an L1 cache separated from the GPU core. We
show how decoupling the L1 cache from the GPU core provides
opportunities to reduce data replication across the L1s and
increase their bandwidth utilization. Specifically, we investigate
how to aggregate the DC-L1s; how to manage data placement
across the aggregated DC-L1s; and how to efficiently connect the
DC-L1s to the GPU cores and the L2/memory partitions. Our
evaluation shows that our new cache design boosts the useful
L1 cache bandwidth and achieves significant improvement in
performance and energy efficiency across a wide set of GPGPU
applications while reducing the overall NoC area footprint.

Index Terms—Bandwidth, GPUs, Locality, Network-on-Chip

I. INTRODUCTION

Graphics Processing Unit (GPU) architectures are a critical
component in most high-performance computing systems as
they provide faster and more energy efficient execution for
many general purpose applications. GPUs employ a conven-
tional two-level cache hierarchy where each core incorporates
a private L1 cache and all the GPU cores are connected via a
Network-on-Chip (NoC) to a shared and banked L2 cache. The
L1 and L2 caches are used to boost the on-chip bandwidth as
a means to address the well-known memory wall problem [1].
An increase in the on-chip bandwidth translates into perfor-
mance improvements for memory-sensitive applications [2]–
[5]. Therefore, prior research efforts developed hardware and
software schemes to improve cache performance [3], [6]–
[11]. However, we find that the conventional cache hierarchy
leads to inefficient utilization of the valuable on-chip caches.
Specifically, the tight coupling between the GPU cores and the
L1 caches results in the following two inefficiencies.

The first inefficiency stems from the many-to-few commu-
nication between the L1s and the L2 banks. This puts more
pressure on the few L2s and less pressure on the many per-
core L1s, which results in a low bandwidth utilization for
the per-core L1s [12]. The second inefficiency is due to the
private nature of the L1 caches. This may lead to high cache
line (data) replication across the L1 caches [3], [5], [13], [14]

as each GPU core may independently cache the same cache
line. Such replication effectively wastes the overall L1 cache
capacity, leading to lower L1 hit rates and hence reduces its
useful bandwidth. If cache line replication is reduced, then
the L1 caches can effectively provide more capacity to cache
more data, leading to higher hit rates, more delivered on-chip
bandwidth, and reduced pressure on the L2 and memory.

In this paper, we address these two inefficiencies by break-
ing the tight coupling between the GPU cores and the L1
caches. To achieve that, we renovate the GPU two-level cache
hierarchy and propose DeCoupled-L1 (DC-L1) caches, where
we separate the L1 caches from the GPU cores. The decoupled
nature of the DC-L1 caches enables aggregating the DC-
L1 caches into bigger caches (while maintaining the total
L1 cache capacity), in which each DC-L1 cache is accessed
by multiple GPU cores. Aggregating DC-L1 caches improves
their individual bandwidth utilizations and reduces data repli-
cation across the DC-L1s as more cores are accessing a given
DC-L1. Although extreme aggregation of DC-L1s (all cores
accessing one DC-L1) eliminates replication and improves
DC-L1 bandwidth utilization, it can drastically reduce the
overall peak L1 bandwidth and hence performance. In this
paper, we use the aggregation granularity as a knob to reduce
replication and improve cache bandwidth utilization while
managing the overall peak L1 bandwidth.

Once we achieve a suitable aggregation granularity, we
propose managing data placement across the DC-L1s to further
reduce replication. Specifically, we evaluate a shared DC-L1
cache design to eliminate replication across the DC-L1 caches.
With a shared DC-L1 cache design, each DC-L1 exclusively
caches a unique slice of the address range. This ensures only
one copy of data exists across DC-L1s, thereby eliminating
replication and making better use of the finite cache capacity.
However, we show that the shared DC-L1 cache design
requires all-to-all communication between the GPU cores
and the DC-L1s, which imposes significant NoC area/power
overheads and NoC scalability/clocking challenges. Therefore,
we propose to vary the sharing granularity using a Clustered
DC-L1 cache design to balance the trade-off between the
replication waste and the NoC overheads. With such a design,
we group the DC-L1 caches into clusters and enable the
shared cache organization only within each cluster instead of
enabling a fully shared cache across all DC-L1s. Therefore,
we eliminate replication within the DC-L1 cluster and reduce
replication across all the DC-L1s in a controlled fashion. This
improves overall GPU throughput while reducing the overall
GPU area and energy requirements.



To enable these DC-L1-based cache designs, a revamped
NoC design is also required to connect the DC-L1 caches to
the GPU cores and the memory partitions. The updated NoC
design depends on the granularity of DC-L1 aggregation and
the granularity of sharing under the clustered DC-L1 cache
design. Also, given the shared nature of the L2 slices and the
unique address range assigned to each DC-L1 within a cluster,
each DC-L1 will communicate only with a few L2 slices. This
further reduces the overall area and energy requirements.
Contributions: This paper contributes the following:
• We propose DC-L1 caches where we dissociate the L1

caches from the GPU cores and aggregate them.
• We propose co-designing the DC-L1 caches and the NoC

to build a shared DC-L1 cache organization that eliminates
cache line replication across the DC-L1 caches. We show that
our holistic approach significantly improves the collective L1
hit rates and reduces the bandwidth pressure to the lower levels
of the memory hierarchy for the applications that are sensitive
to high replication volume.
• To address the drawbacks of the shared DC-L1 organi-

zation (NoC area/power overheads, scalability, and clocking
challenges), we propose a clustered shared DC-L1 cache
design that limits data replication. This cache design enables
a cluster of GPU cores to access a cluster of shared DC-L1
caches, thus eliminating data replication within the cluster and
reducing it across the GPU.
• We evaluate our clustered DC-L1 design across 28

GPGPU applications. On average, our proposal boosts perfor-
mance by 75% (up to 8×) for the applications that are sensitive
to high data replication without degrading performance of the
applications that are insensitive. Additionally, our proposal
reduces the total NoC area by 50%.

II. MOTIVATION AND ANALYSIS

In this section, we discuss the inefficiencies of tightly
coupled L1 caches in GPUs and make a case for separating
and aggregating the L1 caches to address those drawbacks.

A. Inefficiency#1: Cache Line Replication across L1 Caches

With the baseline private L1 cache design, each GPU core
satisfies its L1 requests from the local L1 cache. On a miss,
each core independently fetches the required data from the L2
cache. This may lead to replication across L1s if the cores
request the same cache line, leading to wasted cache capacity.
Wasted L1 Cache Capacity. The volume of replication of the
evaluated applications is shown in Figure 1 in terms of Repli-
cation Ratio, sorted in ascending order. Replication ratio is
defined as the ratio of L1 misses that can be found in other L1
caches to total L1 misses. We observe that the replication ratio
varies across the evaluated applications. Specifically, some
applications have no replication (e.g., C-BLK) or low repli-
cation (e.g., C-RAY), while others have high replication (e.g.,
C-BFS). We also observe that T-AlexNet, T-ResNet,
and T-SqueezeNet from Tango benchmark suite [15] have
significantly high replication. For example, T-AlexNet has
a replication ratio of 95%.
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Fig. 1: Performance of the evaluated applications in terms
of IPC improvement under 16× the L1 cache (normalized to
baseline), L1 miss rate, and cache line replication ratio. The
left-hand y-axis represents replication ratio and raw L1 miss
rate. The experimental methodology is detailed in Section VII.

Identifying Replication-sensitive Applications. The waste
due to data replication may not affect all applications. Only
the applications that are sensitive to larger cache space
are expected to benefit if the wasted cache space is re-
duced/eliminated. Therefore, we study performance of the
evaluated applications under a 16× larger L1 cache in Fig-
ure 1. We observe that 15 applications are both capacity-
sensitive and possess high data replication. To identify the sub-
set of the capacity-sensitive applications that are replication-
sensitive, we study their L1 miss rates. Applications with
low L1 miss rates (e.g., C-NN) may not suffer under private
L1 caches because the majority of their requests can be
satisfied locally. In general, we consider an application to be
replication-sensitive if it 1) has a replication ratio of >25%,
2) has an L1 miss rate of >50%, and 3) observes a speedup of
>5% with 16× capacity. Based on these criteria, we observe
that 12 applications are replication-sensitive (marked by the
blue boxes in Figure 1).
Effect of Eliminating Replication. To estimate the potential
performance benefits of eliminating data replication for the
replication-sensitive applications, we evaluate a hypothetical
design where all GPU cores access a single L1 cache (while
maintaining the total L1 cache capacity and bandwidth) to
ensure no replication. We observe that the L1 miss rate is
reduced significantly by an average of 89.5% under such
design. This is because removing replication allows for more
data to be cached in L1s, thus improving L1 hit rates. For
T-AlexNet, T-ResNet, and T-SqueezeNet, we observe
an exceptional 99% reduction in the L1 miss rates as they have
high replication volume (Figure 1). Overall, for the replication-
sensitive applications, the significant reduction in L1 miss
rates leads to more delivered on-chip bandwidth from the L1s,
which translates to an IPC improvement of 2.9× on average.

B. Inefficiency#2: Low L1 Cache Utilization

The tight coupling of the L1 caches and GPU cores along
with the many-to-few communication pattern (between the
L1s and the L2 banks) puts more pressure on the few L2
banks and less pressure on the many L1 caches. This leads
to low bandwidth utilization of the per-core L1 caches. We
define the per-core L1 bandwidth utilization as the ratio of
a core’s L1 accesses (requests) over the total cycle count.
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Figure 2 shows the maximum band-
width utilization of the L1 cache
data port, across all L1s, under all
the evaluated applications sorted in
ascending order. We observe that the
highest bandwidth utilization of the
L1 data ports is 18%. The low band-
width utilization of the L1 caches is
also shown by recent work [12], [16].
For a comprehensive view, we also
study the utilization of NoC links that carry the data replies
from the L2 to the GPU cores. Figure 2 shows the maximum
NoC link utilization, across all links connected to GPU cores,
for all evaluated applications in ascending order. Similar to the
data port, the maximum link utilization is low (30%), which
further shows the underutilization of the per-core L1s.

C. Solution: Decouple and Aggregate L1 Caches

We propose a DeCoupled-L1 cache (DC-L1) – an L1 cache
separated from the GPU core (Section III). This breaks the
tight coupling between these entities and enables optimizations
to reduce replication across the L1s and boost their bandwidth
utilizations. These optimizations include aggregating the DC-
L1 caches (Section IV) and managing data placement across
the aggregated caches (Section V and Section VI).

III. DECOUPLED-L1 (DC-L1) DESIGN

In this section, we describe Decoupled-L1 (DC-L1) caches
and demonstrate how the DC-L1s, GPU cores, and L2/memory
are connected. Also, we discuss the request/reply flow under
the DC-L1-based design.
DC-L1 Node and NoC Design. Figure 3 A shows our DC-
L1 node design. A DC-L1 node simply contains the DC-L1
cache (DC-L1$), two queues to handle the traffic from/to the
GPU core, and two queues to handle the traffic to/from the
L2 and memory partitions. A GPU core in our design is a
Lite Core. A lite GPU core is similar to the baseline GPU
core but without the L1 data cache and the associated Miss
Status Holding Registers (MSHR). Because the L1 caches are
now separated from the GPU cores, we breakdown the NoC
into two parts. The first NoC B (NoC#1) connects the GPU
cores and the DC-L1 nodes. The second NoC C (NoC#2)
connects the DC-L1 nodes and the L2/memory. The design of
both NoCs is determined by the number of DC-L1 nodes and
the cache organization.
Handling Read Requests. With a DC-L1-based design, an
L1 read request is injected into NoC#1 to the target DC-
L1 node as the GPU core does not have an L1 cache (and
associated MSHR) anymore. The target DC-L1 node queues
the received request into Q1 1 to be served by the DC-L1$ in
FIFO manner. The request at the head of the queue accesses
the DC-L1$. If the request hits in the DC-L1$, then the DC-
L1 node queues the read reply into Q2 2 for injection into
NoC#1 back to the GPU core. If the request misses in the
DC-L1$, then the DC-L1 node queues the request into Q3 3
to be forwarded to the L2 cache through NoC#2. Once a read
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Fig. 3: Decoupled-L1 (DC-L1) node and NoC design.

reply is received from the L2 via NoC#2, the DC-L1 node
queues the reply into Q4 4 to be installed in its DC-L1$.
Concurrently while caching the reply, the DC-L1 queues the
reply to be injected to the requester GPU core through NoC#1
5 . This read reply only needs to provide the data requested
by the requester GPU core. This is because, in our design, a
GPU core does not have an L1 cache to install the data in.
Hence, if the whole cache line is not required by the core, then
sending the read reply at a full cache line granularity from the
DC-L1 will waste NoC#1 bandwidth [17].
Handling Write Requests. A write request follows the same
flow as a read request. However, because we use a write-evict
policy for the DC-L1 caches (Section VII), on a write hit, a
given write request evicts the cache line from the DC-L1$.
The evicted cache line is forwarded to the L2 cache through
NoC#2. On a write miss, no cache line is allocated at the DC-
L1$ and the updated data is delivered to the L2 cache as we
use a no-write-allocate policy. Once a write ACK is received
from the L2, the DC-L1 node forwards the write ACK to the
requester GPU core via NoC#1.
Handling Non-L1 Requests. Because the DC-L1 node is on
the path to L2, all the instruction, texture, and constant cache
misses from the GPU core must go through the DC-L1 node
to be forwarded to the L2 via NoC#2. These non-L1 requests
do not access the DC-L1$. A given non-L1 request is simply
moved from Q1 to Q3 bypassing the DC-L1$. Similarly, a non-
L1 reply is moved from Q4 to Q2. For clarity, the bypassing
of DC-L1$ is not shown in Figure 3.
Handling Atomic Operations. In the baseline, atomic oper-
ations skip the L1 cache and are handled at L2/MC (memory
controller) [18]. Similarly, in our design, atomic operations
skip the DC-L1 cache and are handled at the unaltered L2/MC.

IV. PRIVATE DC-L1 CACHES

In this section, we address the inefficiencies discussed in
Section II. Specifically, to reduce data replication across the
DC-L1s and improve their individual bandwidth utilizations,
we investigate aggregating the DC-L1s into larger DC-L1s.

A. Designing Private DC-L1 Caches
Given a system with X GPU cores and X DC-L1 nodes,

where each DC-L1 node hosts a single DC-L1$ with size
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Fig. 4: Performance under private DC-L1 design. Results are normalized to the private L1 baseline.

C, we aggregate these X DC-L1$ to form Y bigger DC-
L1$ (X > Y ). Each of the Y larger DC-L1$ has a size
of (X × C)/Y and is hosted in a DC-L1 node. Under this
design, each DC-L1 node is accessed privately by a group
of N = X/Y cores via an N × 1 crossbar in NoC#1. We
refer to this private aggregated DC-L1 design as PrY . In that
sense, we can vary Y to control the granularity of aggregation
(X/Y ). Table I shows the different NoC configurations of a
private DC-L1 design using different Y values under our 80-
core baseline (Section VII). For example, Figure 5 shows the
design of Pr40, where 80 DC-L1s are aggregated into 40 DC-
L1s each with double the cache capacity. With Pr40, each DC-
L1 node is privately accessed by two cores via a 2×1 crossbar
in NoC#1. Such a private cache organization allows each DC-
L1 to cache any line. For example, given the different address
ranges represented by different patterns in Figure 5, a private
DC-L1 cache can store any line from all address ranges.

TABLE I: NoC size and peak L1 bandwidth reduction under
different private DC-L1 configurations.

Config. NoC#1
Crossbars

NoC#2
Crossbars

Peak L1
BW

Peak L1
BW Drop

Baseline NA (×1)
80 × 32 XBar

128 Bytes
1 Cycle × 80 -

Pr80 (×80)
Direct Links

(×1)
80 × 32 XBar

128 Bytes
4 Cycles × 80 4×

Pr40 (×40)
2 × 1 XBar

(×1)
40 × 32 XBar

128 Bytes
4 Cycles × 40 8×

Pr20 (×20)
4 × 1 XBar

(×1)
20 × 32 XBar

128 Bytes
4 Cycles × 20 16×

Pr10 (×10)
8 × 1 XBar

(×1)
10 × 32 XBar

128 Bytes
4 Cycles × 10 32×
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Fig. 5: Pr40 design.

B. Evaluating Private DC-L1 Caches
Performance. We evaluate performance of a private DC-L1
cache design on the replication-sensitive applications in terms
of IPC and DC-L1 miss rate, normalized to the private L1
baseline in Figure 4. We start with Pr80 where we decouple
the L1 caches without any aggregation. As shown in Table I,
Pr80 connects the GPU cores to the corresponding DC-L1
nodes using 32-Byte direct links in NoC#1, while connecting
the DC-L1 nodes to L2/memory using a 80×32 crossbar in
NoC#2. Because of the 32B links, the 128B cache line fetched
from a given DC-L1 will be decomposed into four 32B chunks
(assuming no control metadata) to be delivered sequentially to
a requester core. Therefore, the peak theoretical DC-L1 cache
bandwidth is 4× less than baseline (Table I). Nonetheless, as
shown in Figure 4a, performance of Pr80 in terms of IPC
is similar to baseline (3% drop on average). This is attributed
to the latency tolerance property of GPGPU applications. This
also shows that the peak L1 bandwidth is sufficiently abundant
(as shown in [12], [16]). However, Pr80 does not reduce DC-
L1 miss rate as shown in Figure 4b. This indicates no reduction
in data replication across the DC-L1s. This is expected as,
under Pr80, we do not aggregate the DC-L1s.

Under aggregated DC-L1s, a group of cores access a com-
mon caching resource (a single DC-L1$). For example, under
Pr40, two cores access a single DC-L1$. As there is no cache
line replication within a single cache, DC-L1 aggregation
should reduce replication and enhance the collective hit rate of
the DC-L1s. This is shown in Figure 4b where the DC-L1 miss
rate drops by 19%, 49%, and 74% under Pr40, Pr20, and Pr10,
respectively. In terms of throughput, Pr40 improves the IPC
of the replication-sensitive applications by 15%, on average,
compared to baseline. This is because of the reduction in data
replication, hence higher DC-L1 hit rates, which leads to an
increase in the on-chip bandwidth and overall performance. On
the other hand, Pr20 and Pr10 reduce average performance by
3% and 34%, respectively. This is due to the significant drop in
their peak L1 bandwidth (Table I) and the lower NoC bisection
bandwidth due to using smaller crossbars in NoC#2.

To understand the scope of the private DC-L1 design
under different DC-L1 node counts, we assume a perfect DC-
L1$ with 100% hit rate. Figure 4c shows the average IPC
improvement for the replication-sensitive applications under
both normal and perfect DC-L1$ normalized to the private L1
baseline. Three observations are in order. First, Pr10 under
perfect DC-L1$ still leads to a drop in performance by 28%



due to the reduced DC-L1 cache and NoC bandwidth. Second,
Pr20 and Pr40 improve performance under perfect DC-L1$ by
40% and 90%, respectively, compared to their normal DC-L1$
counterparts. However, Pr40 has a higher IPC boost of 2.2×
compared to the baseline with normal L1 cache. Finally, Pr80
under perfect DC-L1$ boosts performance by 3.3× compared
to Pr80 with normal DC-L1$. However, it does not match the
5.2× improvement of having a perfect L1 cache in the baseline
private case (denoted as Base). This is due to the 4× drop in
the peak L1 bandwidth under Pr80.
Area & Power. We study NoC area and static power break-
down under different private DC-L1 configurations, normal-
ized to the private baseline in Figure 6. We use DSENT [19]
to model the crossbars in both NoC#1 and NoC#2, assuming a
22nm technology and assuming that all the evaluated crossbars
can operate at the same clock frequency. We observe the
following. First, Pr80 adds insignificant area and static power
overhead compared to the baseline. This is because Pr80 only
adds links to connect a given GPU core to its corresponding
DC-L1 node. Second, Pr40, Pr20, and Pr10 reduce the NoC
area by 28%, 54%, and 67%, respectively. This is due to break-
ing down the baseline 80×32 crossbar into smaller crossbars,
thus reducing the NoC area [10], [20]. Third, the static power
reduction under Pr40 is just 4%. This is because the small
crossbars of Pr40 reduces the per-router static power from the
Crossbar and the Switch Allocator components; however, it
increases the static power from Buffer components (due to
more routers). Finally, the static power reduction under Pr20
or Pr10 is more than Pr40. This is because Pr40 uses more
small crossbars in NoC#1 and a bigger crossbar in NoC#2.
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Results are normalized to the private L1 baseline.

Verdict. Because Pr40 improves throughput while reducing
the NoC area and maintaining the power consumption (com-
pared to baseline), we choose 40 DC-L1 nodes for the rest
of this paper. However, to bridge the Pr40 performance gap
between normal and perfect DC-L1, we need to investigate
other innovative ways to reduce data replication, thus further
improving the DC-L1s collective hit rates.

V. SHARED DC-L1 CACHES

To eliminate data replication across the DC-L1 caches,
we investigate enabling a shared DC-L1 cache organization.
Under a shared organization, the entire address range is
interleaved across all the DC-L1s and such mapping is fixed.
In other words, each DC-L1 exclusively caches data from a
non-overlapping address range. A DC-L1 that can cache a

given cache line is the home DC-L1 of that line. For example,
Figure 7 shows that the black address range can be cached by
only DC-L1 39. In other words, DC-L1 39 is the home of the
black address range. Because an exclusive slice of the address
range maps to a single DC-L1, the shared organization ensures
no cache line replication across DC-L1 caches.
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A. Designing Shared DC-L1 Caches

To enable a shared DC-L1 organization, any core needs
access to any DC-L1 node. Figure 7 shows one possible design
to achieve that under our setup (Section VII). In this design,
80 GPU cores are connected to 40 DC-L1 nodes via an 80×40
crossbar in NoC#1. We refer to this design as Sh40 (or ShY
in general, where Y is the total number of DC-L1 nodes).
Selecting the Home DC-L1. To select the home DC-L1 for
a given cache line, we use the home bits. These home bits are
selected from the physical address of the request. The process
of selecting these bits is analogous to selecting the appropriate
L2 bank based on the physical address. In general, ShY design
requires dlog2(Y )e home bits to identify the home DC-L1.
Handling Requests. An L1 or a non-L1 request/reply (read or
write) follows the same flow in Section III. The only difference
is that the request/reply is forwarded to the home DC-L1.

B. Evaluating Shared DC-L1 Caches

Performance. We evaluate the performance of Sh40 on the
replication-sensitive applications in terms of DC-L1 miss rate
and IPC, normalized to the private L1 baseline in Figure 8.
Under Sh40, the DC-L1 miss rate drops significantly by an
average of 89% (minimum = 27%, maximum = 99%). The
significant drop in the DC-L1 miss rate is expected as these
applications have high data replication across the DC-L1s
(Section II), which is eliminated under shared DC-L1 design.
This effectively provides L1 cache capacity to store more
cache lines, thus improving the L1 hit rate and the on-chip
bandwidth. The boosted on-chip bandwidth from the DC-L1s
is translated into a throughput boost of 48% on average (up
to 2.9× for T-AlexNet) as shown in Figure 8b.

However, two replication-sensitive applications do not bene-
fit from Sh40. Specifically, P-2MM achieves only 6% speedup
because Sh40 can lead to a partition camping problem.
Partition camping [21] is caused by cache accesses that are
skewed toward a subset of the DC-L1 nodes. This leads to
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Fig. 8: Performance under Sh40. Results are normalized to the
private L1 baseline.

load imbalance between the DC-L1s and limits the benefits of
the shared cache design. As for P-3DCONV, it suffers a 3%
performance loss with Sh40 due to its sensitivity to available
L1 cache bandwidth. Specifically, the traffic in NoC#1 is high
due to the absence of the L1 caches from the GPU cores
and the high DC-L1 hit rate with Sh40. Thus, the reduced
peak cache bandwidth with 40 DC-L1s (Table I) limits the
performance benefits of P-3DCONV under Sh40.
Area & Power. Although Sh40 improves performance of the
replication-sensitive applications, it uses an 80×40 crossbar in
NoC#1 to route the traffic from/to any GPU core to/from any
DC-L1 node. This crossbar, in addition to a 40×32 crossbar in
NoC#2, incurs a NoC area overhead of 69% and a NoC static
power overhead of 57% compared to the private baseline.
Replication-insensitive Applications. We evaluate perfor-
mance of Sh40 on the applications that are classified as
replication-insensitive in Figure 9. We observe the following.
First, most of these applications perform as well as the
baseline (e.g., R-LUD and C-BLK). These applications have
a high tolerance to the latency overhead induced by the DC-
L1 design. Second, R-SC performs better than the baseline.
This is because under the baseline, R-SC suffers from work
distribution imbalance as some cores are assigned more coop-
erative thread arrays (CTAs). This leads to imbalance in L1
cache accesses across the cores. However, given the shared
nature of the DC-L1 under Sh40, such imbalance in DC-L1
cache accesses is mitigated, which reduces the bottlenecks and
improves performance. Second, five applications suffer a drop
in performance with Sh40 (minimum = 40%, maximum =
85%). We refer to these applications as poor-performing appli-
cations in Figure 9. These applications either have high L1 hit
rates and low latency tolerance (C-NN), suffer from partition
camping (C-RAY, P-3MM, and P-GEMM), or are sensitive to
the reduced peak L1 cache bandwidth (P-2DCONV).
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Fig. 9: Performance of replication-insensitive applications un-
der Sh40. Results are normalized to the private L1 baseline.

Verdict. Although Sh40 significantly improves performance
of replication-sensitive applications, it incurs a considerable
NoC area and static power overhead. Also, some replication-
insensitive applications suffer significant performance loss
with Sh40. Therefore, to make a strong case for DC-L1-based
designs, we need to address these two issues.

VI. CLUSTERED SHARED DC-L1 CACHES

We need a design that provides performance boost for
the replication-sensitive applications while reducing area and
energy requirements. Also, it should not negatively affect the
replication-insensitive applications. Therefore, in this section,
we investigate limiting replication instead of eliminating it.
Also, we utilize the fact that smaller crossbars in NoC#1 can
be operated at a higher frequency to boost performance of both
replication-sensitive and replication-insensitive applications.

A. Designing Clustered Shared DC-L1 Caches

The main reason behind the NoC area and power overhead
of Sh40 is the 80×40 crossbar used in NoC#1. This crossbar is
essential to enable the fully-shared cache organization. On the
other hand, with Pr40, replication is still high, but the overall
NoC area and static power is reduced. This presents a trade-off
between the reduction in replication and the NoC area/power
requirements. Therefore, we propose a cluster-based shared
DC-L1 design where we enable the shared cache model
across a cluster of DC-L1 caches instead of all of them. This
eliminates replication across the DC-L1s of the same cluster,
as shown in Figure 10. However, it still allows replication
across the DC-L1s in different clusters. Using the number of
clusters as a design parameter, we can limit replication while
controlling the NoC area and power requirements.
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Fig. 10: Sh40+C10 design.

With this design, a cluster of M DC-L1 nodes is accessed
by N cores via an N × M crossbar in NoC#1. We refer
to this design as ShY +CZ, where Y is the total number of
DC-L1 nodes and Z is the number of clusters (Z = Y/M ).
Additionally, because of the shared nature of the L2 slices
and that each DC-L1 within a cluster is assigned a unique
address range, a given DC-L1 will communicate only with
a few L2 slices. Therefore, instead of using a full Y × L
crossbar in NoC#2 to connect the Y DC-L1 nodes to the L



L2 slices (L ≥ M , L mod M = 0), a given DC-L1 will
communicate only with O = L/M L2 slices via an Z × O
crossbar in NoC#2. For example, Figure 10 shows the design
of Sh40+C10 with 40 DC-L1s and 10 clusters. Each cluster
consists of 8 cores accessing 4 shared DC-L1s via an 8×4
crossbar in NoC#1. The 40 DC-L1s are connected to the 32
L2 slices via four 10×8 crossbars in NoC#2. Specifically,
all the 10 DC-L1s across the clusters that are assigned the
same address range access the 8 L2 slices that serve such
address range via a 10×8 crossbar in NoC#2. To illustrate,
in Figure 10, the DC-L1s that serve the cross-hatched address
range are connected to the L2 slices 0 to 7 (shown as different
colors) that jointly serve such address range.
Selecting the Home DC-L1. As discussed in Section V-A, the
selection of the home DC-L1 is based on the home bits. The
only difference is the number of bits used from the physical
address of a request. Specifically, ShY+CZ design requires
dlog2(Y/Z)e home bits.

B. Evaluating Clustered Shared DC-L1 Caches

Performance. In Figure 11, we evaluate performance of
the clustered shared DC-L1 cache design on the replication-
sensitive applications under different cluster counts. The re-
sults are normalized to the private L1 baseline. In this figure,
C1 and C40 are equivalent to Sh40 and Pr40 designs, respec-
tively. We make several observations. First, the L1 miss rate
is higher when cluster count is more than one (C > 1). This
is due to increased replication compared to the C1 case that
keeps only a single copy of a given cache line across the DC-
L1s. Specifically, up to 5, 10, 20, 40, and 80 copies of a cache
line can exist across the DC-L1s with C5, C10, C20, C40,
and baseline, respectively. This leads to an average L1 miss
rate reduction (compared to baseline) of 72%, 61%, and 41%
with C5, C10, and C20, respectively.
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Fig. 11: Performance of Sh40 under different cluster counts.
Results are normalized to the private L1 baseline.

Second, the performance improvement is still significant
under C5, C10, and C20 even with the smaller reduction in the

L1 miss rate (compared to C1). For example, C10 improves
performance by 41%, on average, over the private L1 baseline.
This represents a 5% drop in performance compared to C1.
Third, the majority of the replication-sensitive applications
perform better with C1 because of their sensitivity to the
additional effective cache capacity achieved by eliminating
the replication. On the other hand, some applications (e.g.,
T-AlexNet) perform better with clustering. This is because
the controlled replication using clustering balances the useful
L1 bandwidth from the additional cache capacity and from
having multiple copies (hence sources) of a given cache line.
This shows that controlled data replication may not negatively
affect, and can even help improve, overall performance.

Finally, P-3DCONV does not obtain speedup with the
clustered design and S-Reduction loses performance (15%
drop). As discussed in Section V-B, the low performance
of P-3DCONV is due to its sensitivity to the reduced peak
cache bandwidth with the DC-L1-based designs. As for
S-Reduction, its performance improves only with the fully-
shared C1 design due to its replication pattern. This is evident
by the 97% drop in L1 miss rate with C1. With other clustering
options, L1 miss rate does not drop, which means no reduc-
tion in replication. Thus, neither the on-chip bandwidth nor
performance is boosted. On the contrary, due to the decoupled
nature of the DC-L1 design and the latency intolerance of the
application, we observe performance degradation.
Area & Power. We evaluate the NoC area and static power of
different cluster counts, normalized to the private L1 baseline,
in Figure 12. Similar to our observation in Section IV-B,
breaking the 80×40 crossbar in NoC#1 with C1 (Sh40) and
using smaller crossbars to form the clusters leads to savings in
the NoC area and static power. Also, using smaller crossbars
in NoC#2 instead of the 40×32 crossbar further improves such
savings. Specifically, compared to baseline, we observe a NoC
area savings of 45%, 50%, and 45% with C5, C10, and C20,
respectively. As for NoC static power, we observe a reduction
of 15%, 16%, and 14% with C5, C10, and C20, respectively.
Given the performance improvement and area/power savings
of C10, we choose this design for the rest of this paper. We
refer to it as Sh40+C10.
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Replication-insensitive Applications. Figure 13a shows per-
formance of the poor-performing applications that significantly
suffered with Sh40. We observe that Sh40+C10 drastically
improves performance of three of these applications compared
to Sh40. Specifically, C-RAY, P-3MM, and P-GEMM benefit
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Fig. 13: Performance of poor-performing replication-
insensitive applications under Sh40+C10 (normalized to
baseline) and the maximum frequency of various crossbars.

as the effect of partition camping is lower with the clustered
design. In other words, the DC-L1 contention from partition
camping is relieved by having multiple home DC-L1s (ten
under Sh40+C10). However, even with this improvement, per-
formance losses in these five applications are still significant
compared to the private L1 baseline with a maximum drop of
49% in P-2DCONV. Therefore, we need to further improve
the performance of these applications.

C. Frequency-boosted Clustered Shared DC-L1 Design

To further boost performance of both replication-sensitive
and replication-insensitive (especially poor-performing) appli-
cations, we improve the performance of NoC#1. This NoC
between the GPU cores and the DC-L1 nodes is busy with
request and reply traffic due to the absence of L1 caches in
the GPU cores and the high hit rate of the DC-L1s under
the clustered shared design. To improve performance, we
utilize the fact that our Sh40+C10 uses smaller crossbars in
NoC#1. This enables us to boost the frequency of these small
crossbars with minimal effect on the overall NoC dynamic
power (evaluated in Section VIII). Using DSENT, we estimate
the maximum operating frequency of different crossbars used
in our designs in Figure 13b. We observe the low maximum
operating frequency of the 80×32 crossbar used in the baseline
and the 80×40 crossbar used in Sh40. On the other hand,
the small crossbars used in Pr40 (2×1) and Sh40+C10 (8×4)
can operate at significantly higher frequencies. Therefore, in
Sh40+C10, we double the baseline frequency of the 8×4
crossbars in NoC#1 while keeping the baseline frequency of
the 10×8 crossbars in NoC#2 the same.1 We refer to this
design as Sh40+C10+Boost. From Figure 13a, we observe
that the frequency-boosted design improves performance of
the poor-performing replication-insensitive applications sig-
nificantly. The performance impact is particularly evident in
P-2DCONV as it is sensitive to the available peak cache band-
width (discussed in Section V-B). By doubling the frequency
of NoC#1, Sh40+C10+Boost partially compensates for the
drop in the peak cache bandwidth due to using 40 DC-L1s
(Table I). Specifically, instead of enduring 8× peak cache
bandwidth reduction with Sh40+C10 (compared to baseline),
Sh40+C10+Boost has a 4× reduction.

1We do not boost NoC#2 frequency as it has less traffic due to the high
hit rate of the DC-L1s.

Verdict. Sh40+C10+Boost is a balanced design that limits
replication to at most 10 replicas. It achieves significant
performance improvements for the replication-sensitive ap-
plications while reducing the NoC area and static power.
Additionally, the boosted frequency in NoC#1 recovers most
of the lost performance of the poor-performing applications.

VII. EXPERIMENTAL SETUP

Simulated System. Our private L1 baseline assumes a generic
GPU, consisting of multiple cores (also called Compute Units,
or CUs) that have private L1 caches. These caches are con-
nected to multiple address-sliced L2 cache banks via a NoC.
We use two separate networks (request and reply) to avoid
protocol deadlocks [18]. Our baseline and proposed designs
assume a separate scratchpad memory and L1 data cache.
The software-managed scratchpad memory is local per-core
and its performance characteristics (latency and bandwidth)
are unchanged across all designs. We model our baseline and
proposed designs using GPGPU-Sim v.3 cycle-level simula-
tor [18]. Table II provides a detailed platform configuration.

TABLE II: Configuration parameters of the simulated GPU.

Core Features 1400MHz core clock, 80 cores (CUs), SIMD width = 32 (16 × 2)

Resources / Core 48KB scratchpad, 32KB register file, Max.
1536 workitems (48 wavefronts, 32 workitems/wavefront)

L1 Caches / Core
16KB 4-way Write-evict L1 data cache - Latency = 28 cycles [16]
12KB 24-way texture cache, 8KB 2-way constant cache,
2KB 4-way I-cache, 128B cache block size

L2 Cache 8-way 128 KB/memory channel (4MB in total)
128B cache block size - Latency = 120 cycles

Memory Model

16 GDDR5 Memory Controllers (MCs)
FR-FCFS scheduling, 16 DRAM-banks, 4 bank-groups/MC,
924 MHz memory clock, Global linear address space is
interleaved among partitions in chunks of 256 bytes
Hynix GDDR5 Timing [22]

Interconnect
80 × 32 crossbar topology, 700MHz interconnect clock,
32B flit size, 4 VCs per port, 4 flits/VC,
iSLIP VC and switch allocators

Evaluated Applications. We evaluate 28 applications from
five representative and diverse benchmarks suites (CUDA-
SDK (C) [23], Rodinia (R) [24], SHOC (S) [25], PolyBench
(P) [26], and Tango (T) [15]).

VIII. EXPERIMENTAL RESULTS

In this section, we evaluate and compare the following
against the private L1 baseline:
• Pr40: The proposed private DC-L1 cache design (Sec-

tion IV) in which we reduce the number of the DC-L1 nodes
to 40 while maintaining the total DC-L1 cache capacity.
• Sh40: The proposed fully-shared DC-L1 cache design

(Section V) in which we enable a shared DC-L1 cache
organization to eliminate data replication across the DC-L1s.
• Sh40+C10: The proposed cluster-based DC-L1 cache

design (Section VI-A) in which we apply the shared cache
design across a cluster of DC-L1s to eliminate data replication
within the cluster and limit replication in the GPU.
• Sh40+C10+Boost: The proposed frequency-boosted

Sh40+C10 (Section VI-C) that doubles the frequency of the
small 8×4 crossbars in NoC#1 under Sh40+C10 design.
Effect on Performance. Figure 14 shows performance of our
proposed designs in terms of IPC normalized to the private L1
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Fig. 14: The effect of the proposed designs on IPC. Results
are normalized to the private L1 baseline.

baseline. We observe the following. First, all the proposed de-
signs improve performance of the replication-sensitive applica-
tions by varying degrees. Specifically, an improvement of 15%,
48%, 41%, and 75% is achieved under Pr40, Sh40, Sh40+C10,
and Sh40+C10+Boost, respectively. Second, performance of
P-3DCONV only improves under Sh40+C10+Boost (31%).
This is because the cache bandwidth sensitivity of P-3DCONV
(Section V-B) is addressed by the frequency boost in NoC#1,
which partially compensates the lost peak cache bandwidth
under the DC-L1-based designs. Third, performance of P-2MM
improves with Sh40+C10(+Boost) as the DC-L1 contention
from partition camping is alleviated by having 10 home DC-
L1s. Fourth, S-Reduction still suffers a drop in perfor-
mance (14%) under Sh40+C10+Boost due to its replication
pattern that can only be eliminated/reduced under the fully
shared Sh40, as discussed in Section VI-B. For the same
reason, P-SYRK achieves a lower IPC improvement of 13%
with Sh40+C10+Boost compared to 2.4× with Sh40.
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Fig. 15: The effect of the
proposed designs on IPC
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For the replication-insensitive
applications (not shown due to
lack of space), a 7%, 22%, and
11% drop in performance is in-
curred under Pr40, Sh40, and
Sh40+C10, respectively. How-
ever, Sh40+C10+Boost maintains
performance of these applications
with an average IPC drop of only
<1%. This is because of the fre-
quency boost in NoC#1, which
in return pushed performance of
the poor-performing replication-
insensitive applications (e.g., C-NN and P-2DCONV). Over-
all, Sh40+C10+Boost improves performance of all evaluated
applications by 27%, as shown in Figure 14. To demon-
strate that, we show the speedup of all evaluated applications
sorted in ascending order under the proposed designs in
Figure 15. This shows that Sh40+C10+Boost can provide
performance benefits for the replication-sensitive applications.
Also, Sh40+C10+Boost pushes the tail of the S-curve towards
the private L1 baseline, thus maintaining performance of the
replication-insensitive applications.
Effect on L1 Miss Rate. Figure 16 shows the effectiveness
of our designs in reducing the DC-L1 miss rate. The results
are normalized to the private L1 baseline. The reduction in the
DC-L1 miss rate under Sh40+C10(+Boost) is higher compared
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Fig. 16: The effect of the proposed designs on L1 miss rate.
Results are normalized to the private L1 baseline.

to Pr40 and lower compared to Sh40. Such a reduction
is directly proportional to the reduction in data replication.
Specifically, for the replication-sensitive applications, only a
single copy of the data (i.e., zero replicas) is maintained
under Sh40. However, under the private L1 baseline, each L1
can store any cache line, which may lead to more replicas
across the L1s (7.7 replicas on average). Pr40 can reduce the
replica count (5.7 replicas on average) compared to baseline.
Sh40+C10+Boost strikes a middle ground between Pr40 and
Sh40 (2.8 replicas on average).
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Fig. 17: L1 cache data
port utilization.

Effect on L1 Utilization. Fig-
ure 17 illustrates the bandwidth
utilization of the L1/DC-L1 cache
data port (maximum per L1/DC-
L1 accesses over the execution
time) with our designs for all
evaluated applications sorted in
ascending order. We observe that
all the proposed designs show
higher DC-L1 data port utilization
compared to baseline L1 data port
utilization. This is from reducing the number of DC-L1 nodes
(by aggregating the DC-L1 caches), which leads to more
requests served by each DC-L1 compared to baseline. We also
studied the utilization of NoC links that carry the data replies
from the L2 to the DC-L1s and observed similar trends.
Energy Analysis. With Sh40+C10+Boost, an 8×4 crossbar
(in NoC#1) connects a nearby cluster of 8 GPU cores and 4
DC-L1 nodes via short 3.3mm links. The DC-L1 nodes and
the L2 slices are connected to the 10×8 crossbars (in NoC#2)
via long 12.3mm links. These conservative estimations are
similar to prior work [10], [20]. We use DSENT to estimate
the power consumption of the crossbars in both NoC#1 and
NoC#2 assuming a 22nm technology. We use GPGPU-Sim
to collect the flit count and NoC link activity to estimate the
injection rates from the GPU cores, DC-L1 nodes, and L2
banks. We feed these estimates into DSENT to compute NoC
dynamic power. Figure 18a shows the static, dynamic, and
total NoC power breakdown for Sh40+C10+Boost normalized
to the private L1 baseline. We observe the following. First,
Sh40+C10+Boost reduces the NoC static power by 16%
compared to baseline. Second, compared to baseline, the
dynamic power of Sh40+C10+Boost is on average 20% higher
because of the high traffic volume in NoC#1. Finally, even
with the high dynamic power toll, the overall NoC power
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Fig. 18: Power and area under Sh40+C10+Boost. Results are
normalized to the private L1 baseline.

under Sh40+C10+Boost 2% lower than baseline. Given the
improvement in the overall throughput and execution time,
the average energy savings under Sh40+C10+Boost is 35%
compared to baseline. Therefore, Sh40+C10+Boost improves
performance-per-watt and energy efficiency (performance-per-
energy), on average, by 29.5% and 95%, respectively.
Area Analysis. Figure 18b shows the area overhead/savings
of Sh40+C10+Boost in terms of the queues within the DC-
L1 nodes, the DC-L1 caches, and the NoC. We discussed
the NoC area breakdown in Section VI-B and showed that
Sh40+C10 reduces NoC area requirements by 50%. The Boost
optimization affects the NoC dynamic power and minimally
affects the NoC area. As for the queues within the DC-L1
nodes, we use four queues (Figure 3) in each DC-L1 node.
Each queue holds up to four 128B entries. All the queues
impose an overhead of 6.25% compared to the total baseline
L1 cache. This overhead is compensated by the 8% cache
area savings from aggregating the DC-L1 caches in a fewer
number of DC-L1 nodes. The cache area is estimated using
CACTI 6.5 [27]. Even though the cache budget is maintained
under Sh40+C10+Boost, we save area as we use fewer cache
ports. Specifically, Sh40+C10+Boost has 50% fewer DC-L1
cache banks and hence fewer cache ports.
Latency Analysis. The decoupled nature of the DC-L1s
imposes additional latency for the communication between
the GPU cores and the DC-L1s. We estimated such latency
under the evaluated applications with Sh40+C10+Boost, and
observed an overhead of 54 cycles, on average. Another
source of latency overhead is the aggregation of the DC-
L1s. Specifically, with Sh40+C10+Boost, each DC-L1 cache
is double the size of the baseline L1 cache, which adds a
7% increase in the DC-L1 access latency. Specifically, the
DC-L1s with Sh40+C10+Boost have an access latency of 30
cycles, compared to 28 cycles L1 access latency in the baseline
(Table II). Such latency overheads do not negatively affect the
evaluated applications because of the latency tolerance of the
GPGPU applications. In fact, given the additional provided
on-chip bandwidth from the DC-L1s with Sh40+C10+Boost,
we observe a 53% reduction in the overall round trip time to
fetch the required data, compared to the private L1 baseline.

A. Sensitivity Studies

Hierarchical Crossbar. Zhao et al. [10], [20] proposed a
hierarchical two-stage crossbar design to improve the NoC

scalability, area, and power. In Figure 19a, we evaluate
a hierarchical crossbar design similar to [20] (denoted as
CDXBar) normalized to the private L1 baseline. We ob-
serve that both the replication-insensitive and the replication-
sensitive applications incur performance degradation of 7%
and 14% with CDXBar, respectively. This is because the
main design goal of CDXBar is not performance. For a fair
comparison with Sh40+C10+Boost, we study doubling the
NoC frequency of the small crossbars in the first stage of
CDXBar (denoted as CDXBar+2xNoC1) and observed a minor
performance improvement (<1%) compared to CDXBar. This
is because CDXBar (and CDXBar+2xNoC1) does not reduce
data replication across the L1 caches, which puts pressure on
the crossbars of the second stage of CDXBar. Hence, once
we double the frequency of both stages of CDXBar (denoted
as CDXBar+2xNoC), we observe performance improvement
of 29% for the replication-sensitive applications. Such im-
provement is 26% lower compared to the 75% improvement
under Sh40+C10+Boost. As for the replication-insensitive
applications, CDXBar+2xNoC improves their performances
by 5% compared to a slight <1% loss under Sh40+C10+Boost.
However, CDXBar+2xNoC incurs higher dynamic NoC power
overhead due to doubling the frequency of all the crossbars.
In summary, Sh40+C10+Boost improves performance signif-
icantly compared to CDXBar-based designs, while achieving
similar NoC area and power savings.
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Fig. 19: Sensitivity studies.

L1 Access Latency. In our baseline, we assume 28 cycles
access latency for the L1 caches (Table II). Figure 19b
shows performance of Sh40+C10+Boost under different L1
(and DC-L1) access latency, ranging from zero to 64 cycles,
normalized to its respective private L1 baseline. We observe
that Sh40+C10+Boost achieves a significant 66% performance
improvement for the replication-sensitive applications even
under zero access latency while maintaining the performance
of the replication-insensitive applications (<1% drop).
CTA Scheduling. We evaluate the effect of the state-of-the-art
distributed CTA scheduler [28] compared to the default round-
robin CTA scheduler under Sh40+C10+Boost. Even with
such scheduler, we observe 46% performance improvement
for the replication-sensitive applications. The reduction in
performance benefits is attributed to mapping the nearby CTAs
to the same core which may reduce replication.
System Size. We study the scalability of our frequency-
boosted clustered shared design (Section VI) by evaluating
Sh60+C10+Boost under a 120-core system with 60 DC-L1s,



48 L2s, and 24 memory channels. We observe that perfor-
mance follows a similar trend to the evaluated 80-core system.
Specifically, we gain significant IPC improvement of 67% for
the replication-sensitive applications, and maintain the private
performance for the replication-insensitive applications.
Boosted Baseline. We investigate various boosted baselines
with 2× the per-core L1 cache capacity, 2× the NoC fre-
quency, and 5× the flit size, respectively. For the replication-
sensitive applications, we observe that these boosted baselines
achieve performance improvement of 33%-36% normalized
to the private L1 baseline. Such improvement is 22% lower
compared to the 75% improvement under Sh40+C10+Boost.
As for the replication-insensitive applications, the boosted
baselines can improve their performance by 2%-6% compared
to a slight <1% loss under Sh40+C10+Boost. However, these
boosted baselines incur significant overheads. Specifically,
using DSENT and CACTI, the cache-boosted baseline incurs
a cache area overhead of 84%, and the flit-boosted baseline
incurs a NoC area and static power overhead of 18.5× and
4.2×, respectively. As for the frequency-boosted baseline, the
80×32 crossbar cannot be operated using 2× the baseline fre-
quency. Finally, our proposed designs are expected to improve
performance with larger DC-L1s or boosted NoC resources.

IX. RELATED WORK

In this section, we briefly discuss works that are most
relevant to this study.
Intra-core Locality in GPUs. Prior works focused on exploit-
ing the locality that exists within a private L1 cache [6], [7],
[9], [29], [30]. In this work, we focus on the locality that exists
across L1 caches. Other works proposed CTA schedulers [28],
[31], [32] using different heuristics to exploit the locality
across CTAs and improve cache performance. However, these
schedulers are not ideal, and the problem of uncontrolled
replication across L1 caches persists. Our proposed designs
restrict replication to a preset limit (e.g., at most 10 copies with
Sh40+C10+Boost) and do not require any software support. In
general, prior L1 cache capacity management techniques [17],
[32]–[34] do not control replication across L1s. However, these
works can improve performance of each individual DC-L1,
while our designs facilitate coordination across DC-L1s for
their better utilization.
Inter-core Locality in GPUs. Prior works focused on improv-
ing the private L1 bandwidth utilization by exploiting inter-
core locality and enabling inter-core communication. This was
achieved by using a ring to connect the GPU cores [14] or
coherence-like mechanisms [35]. Ibrahim et al. [3] optimized
inter-core communication via data sharing prediction and
parallel probing schemes. These works do not reduce repli-
cation across L1s. However, our designs reduce replication
and eliminate the need for inter-core communication. Prior
work [36], [37] proposed sharing an L1 data cache across a
group of cores. This cache design is similar to the private
DC-L1 cache design (Section IV) which suffers from high
data replication compared to our design (Section VI). Zhao
et al. [10] utilized inter-core locality to address bandwidth

bottlenecks at L2 by replicating cache lines across different L2
slices. This work is complementary to our work as it targets
the L2 bandwidth, while ours improves the L1 capacity and
its bandwidth utilization.
Replication Control in CPUs. Prior CPU works investigated
the trade-offs between shared and private cache design for the
last-level caches [38]–[47]. These works focused on latency
as it is often the first-order challenge in CPU workloads.
However, to our knowledge, our work is the first to propose
replication control and clustered shared decoupled L1 cache
design in GPUs in order to boost on-chip bandwidth.

X. CONCLUSIONS

In this work, we showed that rethinking the cache hierarchy
and interconnect design in GPUs can be rewarding in terms
of performance, area, and energy. Specifically, we introduced
the DC-L1 cache, an L1 cache decoupled from the GPU core
to address the low bandwidth utilization of the L1s and the
wasted L1 cache capacity due to cache line replication across
the L1 caches. We used the DC-L1s and proposed a clustered-
based DC-L1 cache organization, where a cluster of GPU cores
access a cluster of shared DC-L1s. With a clustered shared
cache organization, we eliminated data replication within each
cluster and limited the overall replication in the GPU. Our
designs improve the effective L1 cache capacity, which sig-
nificantly boosts on-chip bandwidth and overall performance.
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