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Abstract—Confidential computing (CC) is a critical technology
for protecting data in use. By leveraging encryption and virtual
machine (VM) level isolation, CC allows existing code to run
without modification while offering confidentiality and integrity
guarantees. However, the performance impact of CC in GPU-
based systems can be significant. In this work, we present a
comprehensive performance evaluation of CC guided by a simple
performance model. Specifically, we start by evaluating CUDA
applications with a focus on data transfer, memory management,
encryption, kernel launch, and kernel execution. We also present
a detailed event-level analysis of these applications, revealing that
the execution times of kernels that do not use unified virtual
memory (UVM) are mostly unaffected, while associated kernel
launch overhead and queuing time increase significantly. On the
other hand, the execution time of kernels using UVM increases
drastically under CC, in addition to other launch and queuing
overheads. We also study CNN training and LLM inference to see
how CC overhead would affect them. Finally, we consider several
optimization techniques, including kernel fusion, overlapping,
and quantization, towards addressing the overheads of CC.

Index Terms—Confidential Computing, GPUs, Performance
Evaluation

I. INTRODUCTION

Graphics Processing Units (GPUs) have become the leading
accelerators due to their ability to meet the increasing com-
putational demands of diverse workloads across various com-
puting domains. In recent years, general-purpose GPUs (GPG-
PUs) have extended their support beyond traditional graphics
workloads to more general tasks, such as deep learning, graph
processing, and scientific computation. However, the deploy-
ment of GPUs for services in the cloud has raised concerns
about data privacy and security, as users may be required to
upload potentially sensitive information. With an increasing
volume of sensitive data being processed remotely, the demand
for privacy and security has grown rapidly. This demand has
reinforced the need for confidential computing [1]–[3], which
ensures data confidentiality and integrity through hardware-
enabled Trusted Execution Environments (TEEs) [4]–[11].

NVIDIA recently introduced its confidential computing
(CC) solution for H100 GPUs [3], [12]–[14], marking the
first commercialized GPU TEE product. H100 CC is built
on virtual machine (VM)-level CPU TEEs, such as Intel
Trust Domain Extensions (TDX) or AMD Secure Encrypted
Virtualization-Secure Nested Paging (SEV-SNP).1 Contrary to

1We use Intel and NVIDIA terminologies in this study.

Intel Software Guard Extensions (SGX) [11], [15], a key
advantage of this VM-level isolation is that it requires no
code changes when transitioning to CC. For example, the
device driver and OS can still run inside such a virtual
machine (called Confidential Virtual Machine (CVM) in AMD
terminology, or Trust Domain (TD) in Intel terminology),
which was difficult to achieve in SGX. However, overhead
arises from both CPU [16], [17] and GPU-specific TEEs [3],
[18], [19]. Previous studies [18] have evaluated the overhead
of deploying large language model (LLM) inference on H100
CC systems. However, the reasons behind this overhead, i.e.,
why GPU application performance degrades under CC, have
not been investigated in depth. Without understanding the
low-level breakdown of such overheads, mitigation strategies
remain difficult to explore. In this paper, our goal is to better
understand the overhead of CC in GPU-based systems and
explore potential mitigation strategies.

To this end, we first propose a simple performance model
(Sec. V) to better understand the GPU performance. This
model identifies key metrics (i.e., data copy, launch, queuing,
and kernel execution) affecting GPU application performance
and demonstrates how these metrics contribute to end-to-
end performance. Using this model, we analyze data transfer,
memory allocation, and CC-required encryption overheads
(Sec. VI-A), uncovering memory management properties that
are specific to CC. We conduct a detailed event-level analysis
of kernel launch and execution activities (Sec. VI-B), revealing
that kernel execution time (KET) remains unaffected when
unified virtual memory (UVM) is not used (i.e., in non-UVM
scenarios). However, this is not the case when UVM is used,
as it incurs significant overhead. Also, kernel launch overhead
(KLO), launch queuing time (LQT), and kernel queuing time
(KQT) are significantly affected.

An overview of the overhead breakdown is presented in
Fig. 1. Memory allocation and de-allocation take more time
due to TDX’s memory management design. Data copying
incurs additional overhead due to encryption and decryption
(only CPU side overheads are shown), kernel launches take
longer, and queuing times increase for both kernel execution
and launches. While non-UVM kernels perform nearly the
same regarding KETs, UVM kernels experience extremely
high overhead due to encrypted paging. This is further detailed
in Sec. VI. Using customized microbenchmarks (Sec. VII-A),



H2D LAUNCH1 LAUNCH2ALLOC SYNC FREED2H

K1 K2

H2D LAUNCH1 LAUNCH2ALLOC SYNC FREEENC D2H DEC

K1 K2

LAUNCH1 LAUNCH2ALLOC SYNC FREE
Time

DEC

... K1 ... K2

Baseline

With CC

With CC+UVM

Encryption & API Overhead

Encrypted Paging Overhead

Kernel Queueing Time (KQT)
Kernel Execution Time (KET)
Launch Queueing Time (LQT)
Kernel Launch Overhead (KLO)
Page faults and encrypted migrations

Fig. 1: Overview of end-to-end GPU application performance under different confidential computing (CC) settings: baseline
execution (top, CC-off), execution with confidential computing (middle, CC-on), execution with confidential computing under
unified virtual memory (bottom, CC-on).

we further investigate such kernel launch behaviors and eval-
uate their impact on the overall performance.

Next, we explore optimization techniques, such as kernel
fusion and overlapping, and associated trade-offs (Sec. VII-A).
We also evaluate the performance of CNNs and LLMs
(Sec. VII-B) and examine the impact of quantization tech-
niques on them. To the best of our knowledge, this is the first
work that conducts a detailed characterization of performance
overheads related to GPU-based confidential computing and
evaluates optimizations to address those overheads. Our con-
tributions are summarized as follows:

• We present a performance model that helps in dissecting
key overheads of GPU-based confidential computing into
distinct components, including data transfer, encryption,
queuing, kernel launch time, and kernel execution.

• We perform an event-level analysis of CUDA applications
under both UVM and non-UVM scenarios. With CC, we
observe significant increases in kernel launch overheads
and queuing times. Moreover, UVM kernels experience
substantial slowdowns, while non-UVM kernel execution
remains largely unaffected.

• To address CC overheads, we explore several optimiza-
tions, including kernel fusion and overlapping. For CNNs
and LLMs, we also evaluate quantization techniques and
their potential to mitigate CC overheads.

II. BACKGROUND

In this section, we provide background related to GPU-
based confidential computing and unified virtual memory.

A. GPU-based Confidential Computing

Confidential computing (CC) [1], [2], [20] aims to ensure
the confidentiality and integrity of data (and code) by leverag-
ing hardware-based Trusted Execution Environments (TEEs).
CC protects privacy-critical workloads from a wide range of
threats and physical attacks. This includes cases where the
underlying infrastructure, such as hypervisors or operating
systems, is compromised. This paradigm has gained significant
traction as modern applications rely on cloud and heteroge-
neous environments to meet the computational demands of
emerging workloads.

In this paper, we focus on a heterogeneous CC system,
which leverages both CPU and GPU [20]. The software

architecture and the underlying hardware for confidential com-
puting are shown in Fig. 2. The CPU, which supports Intel’s
Trust Domain Extensions (TDX) [5], [21]–[23] could provide
virtual machine (VM) level isolation and encrypted memory
for trust domains (TDs).2 Unlike Intel SGX [4], [15], [24],
which adopts a process- and region-based isolation model,
VM-level isolation makes TDs capable of running legacy
applications without code modifications. To support TDs, Intel
introduced the Secure Arbitration Mode (SEAM) [16], [25] as
an extension to the Intel Virtual Machine Extensions (VMX).
They also provide a trusted signed component called the TDX
Module, which manages interactions between TDs and the host
(including the hypervisor). Similar to the VMX root and non-
root modes for traditional VMs, SEAM operates with both
root and non-root modes, as shown in Figure 2. Hypercalls
and seamcalls [16], [17] are used to handle communication
and context switching between the TD, the TDX Module, and
the host. Similar to SGX MEE [24], TD’s private memory
is encrypted using Intel Total Memory Encryption–Multi-Key
(TME-MK) [26], [27], a memory encryption engine (MEE)
that resides in the memory controller. However, TME-MK
utilizes AES-XTS [28], a counter-less symmetric encryption
algorithm, which eliminates the overhead of storing secure
metadata. Such a light-weighted design allows TME-MK to
protect the entire memory space, unlike SGX, which can only
secure a limited memory region and could incur significant
overhead [29] from encrypted page swapping.

The GPU architecture includes a PCIe controller for inter-
acting with the CPU through memory-mapped I/O (MMIO)
and direct memory access (DMA). Internally, the GPU is
equipped with several engines, including the command pro-
cessor (also known as the channel engine), copy engine,
compute engines, and graphics engines (only compute en-
gines are shown in Fig. 2) [30], [31]. The GPU features its
own dedicated device memory, with each memory partition
comprising L2 cache slices, a memory controller, and high-
bandwidth memory (HBM) stacks. With GPU passthrough via
VFIO [32], the VM or TD can access the GPU directly, as
if it were natively attached over PCIe. Note that the GPU
must be switched to CC mode before binding to a TD.
When a TD needs to offload computation to the GPU, the
device driver within the TD sends commands (e.g., set device,

2In this paper, we use the terms TD and CVM interchangeably.
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Fig. 2: Architecture overview of CPU-GPU confidential com-
puting. Detailed hardware specifications are documented in
Section IV. The dashed green regions are trusted components,
including both CPU and GPU packages and the Intel TDX
module. Confidential computing must take place in isolated
trusted domains (TDs). The GPU is exclusively occupied
by either TD or traditional VM. A detailed threat model is
described in Sec. III.

kernel launch) to the GPU. This IO request from TD will
trigger tdx_hypercall to perform a context switch to the
TDX Module and then transferred to the host (hypervisor) for
handling (i.e., Intel #VE [33]). The command processor [10],
[11], [34]–[40] is responsible for handling all commands
issued by the device driver. Commands are submitted to
MMIO-configurable channels [10], [40] and represent the only
pathway for the GPU to receive commands. Each channel is
associated with a channel descriptor and page tables [41] and
is exclusively linked to a single GPU context.

Once received by the command processor, the commands
are distributed to the appropriate engines for execution. For
instance, copy engines [30], [36], [37], [42] handle asyn-
chronous memory transfers between the CPU and GPU, while
the compute engine, consisting of a collection of general
processing clusters (GPCs3), executes highly parallel com-
putations in the single-instruction, multiple-thread (SIMT)
style. Additionally, the GPU incorporates a GPU Memory
Management Unit (GMMU) to manage virtual memory on the
GPU, which is further detailed in Sec. II-B. Under confidential
computing, CPU-GPU communication over the PCIe bus is
encrypted using AES-GCM [3], [43], [44]. This encryption is
implemented in software using OpenSSL [45] with AES-NI
[46] acceleration. Our findings confirm this implementation,
and we evaluate the performance of different crypto choices
in Sec. VI. Meanwhile, due to TDX isolation requirements
and IOMMU limitations, the GPU cannot directly access a
TD’s private memory. As a result, DMA operations require
shared memory managed by the hypervisor, known as a bounce
buffer, which can be allocated using the dma_alloc_*
APIs [16], [17], [19], [25], [33], [47]–[49], to temporarily
hold the encrypted data being transferred. The Linux kernel

3Collection of texture processing clusters (TPCs). Each TPC includes few
streaming multiprocessors (SMs).

set_memory_decrypted() can be used to convert a
private page into a shared page. Internally, it changes page
attributes to bypass TME-MK.4 It is important to note that
GPU HBM itself is not encrypted; the reasoning behind this
decision is discussed in Sec. III.

B. Unified Virtual Memory

Unified Virtual Memory (UVM) [50] enables a shared
memory address space between CPU and GPU. By elim-
inating explicit data copy function calls, UVM simplifies
programming for heterogeneous CPU-GPU systems. Using
the cudaMallocManaged API, the same memory object
pointer can be referenced on both the CPU and GPU, enabling
data pages to migrate on demand. For example, when the
GPU attempts to access a page residing in CPU memory,
it triggers a far fault. The GPU Memory Management Unit
(GMMU) handles this type of page fault request. The request
is forwarded to the CPU-side UVM driver [51]. The average
latency reported is estimated to take 20 µs - 50 µs [52]–[54].
Subsequently, the requested pages are migrated to the GPU
via the PCIe bus. However, naive page migration introduces
significant performance overhead compared to the regular
copy-then-execute model [55]. To mitigate such overhead,
NVIDIA GPUs internally employ batching and prefetching
techniques [54], [56]. In this paper, we use the term UVM
to refer to applications that use the cudaMallocManaged
API for memory management. In contrast, non-UVM refers to
applications that rely on explicit memory transfers using the
cudaMemcpy API.

III. THREAT MODEL

With Intel TDX and NVIDIA CC, the Trusted Computing
Base (TCB) extends beyond the CPU/GPU packages to include
the TDX module and firmware on both CPU and GPU sides.
As a result, we trust the NVIDIA-provided GPU device driver
running inside the TD. Hypervisor [57], [58], CPU memory,
and the PCIe interconnect [59], [60] are still considered
untrusted and potentially vulnerable to compromise. Although
PCIe 5.0 does not natively support Integrity and Data Encryp-
tion (IDE) [61]–[63], NVIDIA utilizes Security Protocols and
Data Models (SPDM) [43], [64], [65] to attest communication
between the CPU and GPU over PCIe. Additionally, AES-
GCM is used to encrypt data transferred through the PCIe
bus [3], [43]. However, GPU side-channels are still possible
under CC [43] (e.g., physical side-channels) and have been
explored in other contexts [31], [41], [66], [67].

In GPU-based confidential computing systems, CPU-side
DDR memory is considered insecure [68]–[72]. Therefore,
memory encryption [24], [73], [74] (i.e., TME-MK) must be
applied to preserve the confidentiality and integrity of data
residing in TD’s private memory. However, HBM in high-end
GPUs (e.g., NVIDIA H100 and AMD Instinct MI325X) is
assumed to be immune to physical attacks and thus considered
to be secure. This assumption [75]–[78] relies on the fact that

4Documented in arch/x86/mm/pat/set_memory.c.
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3D-stacked HBM [79], [80] is fabricated alongside the chip
and connected using a silicon interposer. The HBM dies within
the same stack are internally connected using through-silicon
vias (TSVs). The physical scale is so small that it is unlikely
an attacker could intercept or modify the data by inserting a
Trojan in the die or interposer [43], [78]. This assumption has
been used in previous studies [10], [11], [81]–[83], which also
applies to H100 CC, eliminating the need for GPU memory
encryption. Although attacks like Rowhammer [84], [85] pose
threats to CPU memory, to the best of our knowledge, no real-
world Rowhammer attacks have been reported against GPU
HBM so far.

IV. EXPERIMENTAL SETUP AND METHODOLOGY

In this section, we describe our evaluation setup. As shown
in Table I, the system is built with commercial hardware to
support CPU-GPU confidential computing (CC). It features
dual Intel Emerald Rapids (EMR) processors (5th Gen Xeon
Scalable Processor family [86]) with official TDX support.
This setup closely mirrors the architecture depicted in Fig. 2.

TABLE I: Confidential Computing System Setup

Configuration
CPU 2× 5th Gen Intel Xeon 6530 Gold @2.1GHz, 32 cores
Memory 16× 64GB DDR5 4800MHz (1TB)
TME-MK Auto bypass enabled
Storage Micron 5400 PRO 960GB, SATA
System Supermicro SYS-421GE-TNRT3 (PCIe 5.0)
OS Ubuntu 22.04.5 LTS (Linux 6.2.0, tdx patched)
Hypervisor QEMU 7.2.0 (tdx patched)
TDX Tools TDX 1.5 (tag 2023ww15)
GPU NVIDIA H100 NVL, 94GB HBM3, PCIe 5.0 ×16

CUDA 12.4, Driver 550.127.05

Each CPU has 32 cores clocked at 2.1 GHz, totaling 64
physical cores across 4 NUMA nodes. The system includes
1 TB of main memory and two NVIDIA H100 NVL 94GB
GPUs, with one connected to socket 0 (NUMA node 0) and
the other to socket 1 (NUMA node 3). The entire platform
is hosted on a Supermicro SYS-421GE-TNRT3 server, which
supports both TDX and direct PCIe 5.0 connections. We
enabled the TDX feature in the BIOS as suggested by Intel.

The software stack was built following the NVIDIA Con-
fidential Computing Deployment Guide (v.3.0 [13]). The
system runs Ubuntu 22.04.5 LTS with a custom-patched
Linux 6.2.0 kernel for TDX support. The hypervisor is
QEMU 7.2.0, also patched for TDX compatibility, and we
use TDX tools from tag 2023ww15 [23]. The Intel TME-
MK functionality is enabled with auto bypass configured,
allowing memory encryption only for TDs. We enable GPU
passthrough to the VM (either traditional or TD) using the
Linux VFIO driver [32]. Note that for TDs, the GPU must
be set to CC mode (using NVIDIA GPU Admin Tools5 [14])
to work properly. All CC experiments were conducted inside
a TD, while non-CC experiments were performed in a regular
VM—no experiments were run directly on the host. This
methodology aligns with prior studies [16], [18].

5We set CC mode to devtools [13] to access performance counters.

To ensure stable performance measurements, hyper-
threading and CPU auto-boost are disabled, and the CPU clock
frequency is fixed at 2.1 GHz. NUMA balancing is turned
off to avoid NUMA effects. Unless specified, the VM or TD
is allocated 64GB of memory and pinned to NUMA node
0 (16 cores) using numactl, where the GPU is attached.
Workload-specific settings and evaluation results are detailed
in the following sections. Performance statistics are collected
using NVIDIA Nsight Systems [87] and software timers.

V. GPU PERFORMANCE MODEL

Figure 3 shows a high-level formulation of our performance
model. Our performance model is inspired by the Effective
KLO [88] work, which was originally targeted for mobile
GPUs but did not account for data movement. As shown in
Figure 3, we dissect total end-to-end application execution
time (a metric to measure application performance, P ) into
four parts. The first part (A), termed as Tmem, primarily
includes data transfer (e.g., H2D and D2H) overhead. After
a launch operation completes, the GPU kernel is injected
into a task queue [40], [89], where it waits for a time
interval before execution begins; this is referred to as Kernel
Queuing Time (KQT). Similarly, before the next consecutive
launch can start, there is a waiting period named as Launch
Queuing Time (LQT). The second part (B) of our performance
model captures the combined duration of both kernel launch
operations (KLO) and the time kernels spend waiting in the
queue (LQT) before they are launched. The third part (C)
considers the combined time related to kernel execution (KET)
and associated queuing time (KQT). Finally, the last part
(D), termed as Tother, primarily includes memory allocation
(ALLOC), memory de-allocation (FREE), and synchronization
overheads (SYNC). Regarding synchronization overhead, most
of it may overlap with part (C), while the non-overlapping
portions are included in this Tother category.

LAUNCH1 LAUNCH2

K1 K2

D2HH2D

P = (1-α )Tmem + Σ(KLO+LQT) + Σ[(1-βi )(KET+KQT)] + Tother 

β1

α

ALLOC FREESYNC

β2

α

(A) (B) (C) (D)

Kernel Queueing Time (KQT) Launch Queueing Time (LQT)

Fig. 3: GPU Performance Model

Note that α and βi are parameters that indicate how much
of the memory copy or kernel execution can overlap with other
operations, respectively. For example, α = 0 implies that the
memory copy operations (e.g., H2D) are not overlapped with
other operations. With the help of asynchronous APIs provided
by CUDA (e.g., Streams), overlapping between different oper-
ations is possible (see Sec. VII-A), leading to a higher value of
α. Regarding βi, its value can be different for each kernel. For
the scenario shown in Figure 3, β1 for K1 is 1, implying that
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part (C) is completely overlapped with part (B). In contrast, β2

for K2 is zero, implying that both parts (B and C) contribute
toward total end-to-end application execution time (P ). The
maximum values of both α and βi are 1.

VI. PERFORMANCE OVERHEADS OF CC

In this section, we evaluate the performance overheads of
GPU-based confidential computing systems through a compre-
hensive set of benchmarks and analyses. We aim to understand
how systems perform under CC, identify the sources of
overhead, and provide a detailed breakdown of where these
overheads arise. We will use the performance model discussed
in Section V to drive our discussions.

A. Effect of CC on Data Transfer and Memory Management

Most GPU applications adopt a copy-then-execute scheme,
which requires explicitly transferring the necessary data to
GPU memory. It is because typically, CPU and GPU operate
within isolated, non-coherent memory domains, and hence,
such data movement is unavoidable. Moreover, because of
the GPU’s internal architecture, multiple memory copy op-
erations cannot be multi-threaded (e.g., using CUDA APIs6

or OpenMP) and thus become part of the critical path. As
a result, data movement must be carefully considered when
evaluating end-to-end performance.
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cc, which refers to the confidential computing mode. (b) Single
core throughput of encryption and authentication algorithms
on different CPUs.

Data Transfer. We first evaluate the PCIe data transfer
bandwidth, as shown in Fig. 4a. We observe that there is a
significant bandwidth gap between CC and non-CC modes.
Previous studies [18] have highlighted such gaps. However,
they did not account for the type of memory used during the
transfer. For pinned memory and pageable memory [90], the
bandwidth gaps between CC and non-CC modes differ. In non-
CC mode, pinned memory offers a bandwidth advantage as it
reduces the need for additional memory copies. However, due
to the memory isolation enforced by TDX [3], native pinned

6CUDA memory copy APIs are blocking in nature.

memory cannot be used in CC mode. As shown in the figure,
the bandwidth for pinned and pageable memory is nearly
identical in CC mode. This aligns with observations from
previous work [3], which indicates that pinned memory in
CC mode is implemented using pageable memory mechanisms
through UVM.

Observation 1. The PCIe bandwidth utilization in CC
mode drops significantly compared to non-CC mode.
Additionally, the bandwidth gap between pageable and
pinned memory observed in non-CC mode disappears
in CC mode, suggesting that pinned memory relies on
pageable mechanisms in CC mode.

To understand the PCIe data transfer bandwidth gap between
CC and non-CC modes, we study the encryption process
and its associated bandwidth. Current CC implementations
leverage AES-NI acceleration. Interestingly, as shown in
Fig. 4b, we find that the maximum data transfer bandwidth
(3.03 GB/s, pin-h2d) under CC is slightly lower than the
maximum AES-GCM throughput (3.36 GB/s). The reason
behind this gap may be explained by analyzing the data
transfer process involved. In CC systems, data transfers require
a bounce buffer, which is a shared memory region managed
by the hypervisor. Consequently, the corresponding extended
page table (EPT) is also managed by the hypervisor. The copy
process can be described in the following steps: a) prepare
the data in the TDX-isolated memory region, whose EPT
is managed by the TDX Module, b) encrypt the data using
software AES-GCM, c) copy the encrypted data to the bounce
buffer, d) GPU’s DMA engines copy the data from the bounce
buffer to GPU, and e) data is then decrypted and stored in GPU
HBM. In summary, these context switches and data movement
could be contributing to the bandwidth gap.

We also evaluate the performance of AES-GCM and other
crypto algorithms on two CPUs: an Intel EMR CPU and
an NVIDIA Grace CPU. Our results are shown in Fig. 4b.
Unfortunately, the encryption performance of AES-GCM on
both CPUs remains much lower than the peak bandwidth
obtained in non-CC scenarios. GHASH, which could be used
to construct GMAC [44], achieves higher throughput (up to
8.9 GB/s) at the cost of confidentiality. As suggested by prior
work [18], TEE-IO [91] technology offers a potential solution
to this problem. However, its adoption requires hardware
replacement, which may incur high costs. Therefore, software-
level optimization techniques must be explored and applied.
We discuss some existing optimizations in Sec. VII.

Observation 2. The absence of dedicated hardware
AES engines results in low encryption throughput. Even
with AES-NI acceleration, encryption throughput remains
insufficient to meet performance demands. While alterna-
tive cryptographic algorithms may offer higher through-
put, they often come at the cost of weaker security
guarantees.
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To better understand how data transfer impacts application-
level performance, we analyze detailed memory copy events
across several benchmark suites. Specifically, we select ap-
plications from Rodinia [92], Polybench [93], and UVM-
Bench [55], as well as two graph processing suites, Graph-
BIG [94] and Tigr [95]. Fig. 5 shows the time spent on
memory copy operations. It is important to note that in some
applications, the underlying copy mechanism may change
under CC. For example, D2D transfers may occur in certain
CC applications (e.g., 2dconv) but not in the non-CC version.
In these cases, H2D or D2H copies on pinned memory are
identified as D2D operations by Nsight Systems, which also
labels them as Managed. It is likely because these copy oper-
ations are performed on pinned memory which are achieved
via page faults and encrypted data migrations (Observation
1). We refer such UVM mechanism under CC as encrypted
paging. Across all evaluated applications, copy time increases
significantly under CC, with overheads ranging from 1.17× in
cnn to 19.69× in 2dconv.

In summary, data transfer affects overall performance (Fig-
ure 3). Under CC, Tmem, is further increased due to software-
based encryption and the UVM mechanism. To optimize Tmem,
two approaches can be considered: a) overlapping memory
copy operations with computation (i.e., by increasing α),
and b) increasing bandwidth and/or reducing data movement
between CPU-GPU (i.e., by reducing Tmem).

Observation 3. On average, copy operations in CC
mode take 5.80× longer compared to non-CC mode,
with a maximum slowdown of 19.69×. Pinned memory is
converted to UVM encrypted paging in CC mode, which
incurs high overhead.

Memory (De)allocation. Although memory management (i.e.,
allocation and deallocation) is part of Tother, it significantly
impacts end-to-end performance. Since TDX isolates memory
management functionalities, these operations take longer in
CC mode. As shown in Fig. 6, both allocation and deal-
location incur higher overhead due to isolation stacks. On
average, in CC mode, cudaMalloc, cudaMallocHost,
and cudaFree take 5.67×, 5.72×, and 10.54× longer,
respectively, compared to the non-CC setup. Since in UVM
settings, cudaMallocManaged is used to manage the uni-
fied memory space, we measured its performance under CC as
well. The results show that cudaMallocManaged under CC
incurs a 5.43× slowdown compared to the non-CC version.
Meanwhile, free managed memory with cudaFree experi-
ences a 3.35× slowdown. We further compared the time spent
on memory allocation and deallocation between non-UVM and
UVM applications. Using the non-CC, non-UVM setup as the
baseline, we observe that non-CC UVM reduces allocation
time to 0.51× but increases deallocation time to 3.13×;
meanwhile, CC-UVM takes 1.01× longer for allocation and
18.20× longer for deallocation. Hence, optimizing memory
management under TDX presents a potential opportunity.

6



0

2

4

6
(a) Base KLO

CC KLO

0

1

2

3

4
(b) Base LQT

CC LQT

cn
n

km
ea

ns kn
n

lo
g-

re
g

dw
t2

d
ho

ts
po

t3
d nw

pa
rtf

il
pa

th
fin

de
r sc

2m
m

3d
co

nv
3m

m
at

ax
bi

cg co
rr

co
va

r
fd

td
-2

d
gr

am
sc

hm m
vt

ss
sp

_t
ig

r
ss

wp
_t

ig
r

bf
s_

dt
c

be
t

gc
_d

tc
gc

_d
wc

tri
_c

nt

0

5

10

15

20
(c) Base KQT

CC KQT

Fig. 7: Effect of CC on Kernel Launch Overhead (KLO),
Launch Queuing Time (LQT), and Kernel Queuing Time
(KQT). Applications with no queuing time (e.g., only a single
launch) are excluded. Results are normalized to non-CC time.

cudaLaunchKernel
libcuda_static
libcuda.so

RmIoctl
……

dma_direct_alloc
set_memory_decrypted
……

__tdx_hypercall
……

__tdx_hypercall

……
RmIoctl
……

cudaLaunchKernel
CC launch (~52 stacks)Non-CC launch (~37 stacks)

Fig. 8: Simplified call stack derived from a flame graph [96]
of a cudaLaunchKernel call inside a TD, obtained using
perf [97]

B. Effect of CC on Kernel Launch and Execution

Fig. 7 shows the effect of CC on Kernel Launch Overhead
(KLO), Launch Queuing Time (LQT) and Kernel Queuing
Time (KQT). Our observations are described below:

Kernel Launch Overhead (KLO). In some applications
(e.g., dwt2d), KLO significantly delays the start of a kernel
execution, and this overhead further increases in CC mode.
For instance, as shown in Fig. 7a, KLO increases by up to
5.31× in dwt2d, which only involves 10 kernel launches. To
further confirm the general behaviors of KLO under CC, we
show the Cumulative Density Functions (CDFs) of each launch
operation in Fig. 11a. We observe the distribution of CC KLO
shifts to the right compared to Base, and the average CC KLO
is higher than Base KLO. To further understand this increase,
we use perf to profile a single kernel launch and generate
its call stacks from a flame graph, a simplified version is
shown in Fig. 8. TDX introduces additional overhead when the
TD interacts with external components (e.g., the TDX module
and hypervisor) through hypercalls. This overhead also affects
kernel launch operations, as the GPU driver must communicate
with the device to configure execution. Such communication
is mediated by the host via hypercalls to facilitate context
switching. A comparison of the call stacks reveals a significant

increase in TDX-related operations in CC mode. For example,
the dma_direct_alloc call attempts to allocate a bounce
buffer, while set_memory_decrypted converts private
memory into shared memory. According to hypercall evalua-
tions [16], tdx_hypercall operations can increase latency
by over 470%, further exacerbating the observed overhead.

Queuing Time: LQT and KQT. As shown in Fig. 7b, for
applications like sc and 3dconv, the LQT increases substan-
tially over a non-CC setup. For example, 3dconv involves
254 launches of the same kernel within a loop. There are
1611 launches for sc. The accumulated queuing time between
consecutive kernel launches becomes significant and worsens
under CC. Interestingly, some applications exhibit lower LQT
in CC mode. Applications such as 3mm, atax, bicg, and
corr involve only 2–4 short-running kernel launches, where
potential queuing time variations are not stable and can
fluctuate. We believe kmeans is an outlier since its first non-
CC launch is significantly ahead of its second launch. Some
applications exhibit significantly increased KQT under CC,
such as 2mm and sc ,which are shown in Fig. 7c. For 2mm,
which only has 2 kernel launches, the KQT is minimal in non-
CC mode, making it highly susceptible to amplification under
CC. This behavior also applies to applications with fewer
kernel launches, such as 3mm, atax, bicg, and corr, all
of which show noticeably increased KQT under CC.

Observation 4. On average, CC increases KLO by
1.42× mostly due to TDX hypercalls. However, its impact
on LQT and KQT largely depends on the number of
kernel launches. For applications with a low number
of kernel launches, KQT can be significantly amplified.
On average, CC increases LQT by 1.43× and KQT by
2.32×.

Kernel Execution Time (KET). If there is no further com-
munication with the host, the KET should have minimal
performance degradation under CC. Fig. 9 shows KET results
across several benchmarks. We observe that CC non-UVM
KETs are nearly identical compared to non-CC non-UVM
KETs across all evaluated applications. We further plot the
CDFs of KETs, as shown in Fig. 11b. The results indicate that
KET follows (almost) the same distribution even under CC.
When UVM is applied, even in the non-CC setting, it results
in an average slowdown of 5.29×. Due to the UVM encrypted
paging overhead under CC, KET gets amplified: it increased
from 1.08× (gramschm) to 164030.65× (2dconv).

Observation 5. CC has minimal impact on non-UVM
kernels. The average KET across the evaluated applica-
tions shows only a 0.48% increase in CC mode. However,
encrypted page migration of UVM in CC mode incurs an
average slowdown of 188.87×.

Case Study. We demonstrate how KLO and LQT impact
non-UVM application performance under CC. We exclude
the impact of KQT in this analysis as most KQT durations
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Σ(KLO+LQT)

Σ(KET+KQT)

Fig. 10: Distribution of events and their durations for representative applications. We focus on two types of events: Kernel and
Launch. The X-axis represents event start timestamps (µs). The Y-axis represents the event duration (µs): it can be either KET
(for a Kernel event) or KLO (for a Launch event). The events with the longest duration are excluded for clarity.

are in the order of tens of microseconds, which is relatively
small compared to the total execution timeline (often spanning
millions of microseconds). Fig. 10 presents the kernel launch
and kernel execution events across the application lifetime.
We include four applications in this analysis. Memory copy
operations are not considered in this context as all these
applications currently have α = 0 (no overlapping).

The trace in Fig. 10A suggests that although KLO and LQT
increase (with CC launch points shifted upward on the Y-axis
and sparsely distributed along the X-axis compared to non-CC
launch), the overall execution time of this application does
not increase significantly. This is because

∑
(KLO + LQT)

can be overlapped by the long KET. A similar situation is
observed in Fig. 10B, where the launch events under CC
exhibit higher KLO and more sparse distributions. However,
the diverse execution times of a large number of kernels (in
orange and blue for non-CC and CC, respectively) effectively
hide the impact of KLO and LQT.

For the applications above, we further explain their behav-
iors based on Fig 3. When the term

∑
(KLO + LQT) in-

creases, the value of β also increases. Since
∑

(KET+KQT) is
sufficiently large, it helps balance the overall time. As a result,
the end-to-end performance is less affected. On the other hand,
for applications like streamcluster (sc) (Fig. 10C) and
3dconv (Fig. 10D), the Kernel-to-Launch Ratio (KLR) is low.
KLR is defined as KET/ (KLO + LQT). Low KLR will lead to
β closer to 1, which means kernel execution is largely hidden

by launch. In these cases, performance is dominated by KLO
and LQT. Note that a sufficient number of kernels is needed
to observe this behavior.

Observation 6. For applications with many kernel
launches, a high Kernel-to-Launch Ratio (KLR) helps.
A high KLR means KET/ (KLO + LQT) is large. In
this case, under CC, the impact from launch is small
because launch events could be overlapped by other
kernel events. But for applications with low KLR, launch
events become sparse and β will approach to 1. This
leads to longer finish times and term

∑
(KLO + LQT)

will then dominate the performance.

VII. TECHNIQUES TO ADDRESS OVERHEADS OF CC

In this section, we explore optimization opportunities to
address CC overheads. While some optimizations are based
on existing techniques, this is the first time they are analyzed
in the context of CC systems, providing novel perspectives on
addressing CC-specific challenges.

A. Kernel Fusion and Overlapping

We consider kernel fusion and overlapping mechanisms
to reduce and hide the overheads of CC. To explore these
optimizations, we start by studying a microbenchmark shown
in Listing. 1. This microbenchmark employs PTX [98]
nanosleep instructions to create a kernel with a fixed
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Fig. 11: CDFs for KLO and KET. The X-axis represents the
event duration (in µs). For clarity, exact values are not shown.
Note that for the kernel launch CDF, some launches span
different orders of magnitude. To display the CDF on the same
scale, the top 5 longest launch durations are removed. The
average value is calculated over all data points, without any
removals.

__global__ void K_x(){
#pragma unroll N_x
for (int i = 0; i < ITER_x; i++) {

asm volatile("nanosleep.u32 %0;"::
"r"(CLK));↪→

}
}

Listing 1: Code for a microbenchmark kernel that runs for
a specified duration using PTX nanosleep instructions. We
instantiate multiple kernels with different values of x to control
KET.

int main(){
// ......
for (int i = 0; i < nStreams; ++i){

cudaMemcpyAsync(&d_a[offset], &a[offset],
bytes, H2D, s[i]);↪→

}
for (int i = 0; i < nStreams; ++i){

K_x<<<TH, BLK, 0, s[i]>>>(d_a, offset);
}
for (int i = 0; i < nStreams; ++i){

cudaMemcpyAsync(&a[offset], &d_a[offset],
bytes, D2H, s[i]);↪→

}
}

Listing 2: Host code attempts to overlap data transfer with
kernel computation. This host code launches kernels based on
the number of streams.

execution time (100 ms in our setup) [99]. To control the size
of the generated machine code (PTX and SASS), we utilized
a loop unrolling parameter, Nx.
Kernel Fusion. We launched two microbenchmark kernels
(shown in Listing 1), K0 and K1, back-to-back: K0 is
launched 100 times, then followed by K1 for 100 times. KLO
is shown in Fig. 12a. It is evident that the first launch of
a new kernel incurs a higher overhead. Subsequent launches
present lower KLO. As shown in Fig. 10, the number of kernel
launches in some applications introduces significant overhead
(Observation 6.). A straightforward optimization is to fuse
some kernels, reducing the number of launches and increasing
the execution time of individual kernels. This can lower the
term KLO + LQT, shortening runtime and increasing the
Kernel-to-Launch Ratio (KLR). While kernel/launch fusion
has been extensively studied in other contexts [100]–[105],
its benefits and trade-offs for CC remain unexplored.

Unfortunately, fusing all kernels into a single one is not
ideal, as fewer launches can result in significantly higher
KLO as shown in Fig. 12a. To evaluate this, we keep the
total KET the same and progressively fuse kernels down to a
single launch. The results, shown in Fig. 12b, reveal that KLO
and LQT follow different trends during fusion, highlighting
a trade-off between the number of kernels fused and CC
performance. It also indicates that a fully fused kernel is
suboptimal. A balanced approach to kernel fusion is needed
for optimal performance under CC.

Kernel fusion typically requires source code modification.
For applications like 3dconv, where a single kernel is exe-
cuted iteratively, a more efficient approach is to fuse launch
operations using cudaGraph APIs [106]. However, there
is a trade-off between graph creation and KLO, making the
optimal fusion level a key consideration. Ekelund et al. [107]
found that an optimal fusion point exists for kernel launches,
independent of the application. However, whether this finding
holds in CC mode remains unclear, and we leave it for future
work.

Observation 7. Launch count affects KLO, the first
few launches show much higher KLO value. Due to the
different trends of KLO and LQ when the number of
launches change, kernel fusion under CC is not a trivial
task, and it has different objectives compared to non-CC
world.

Overlapping. Beyond fusion, another potential optimization
is to improve overlapping between operations (increasing α
and β). While overlapping [108], [109] can be difficult due to
data dependencies, we study an ideal case where kernels have
no data requirements (Listing. 2). Results in Fig. 12c show
data transfer sizes of 512MB and 1GB accumulated across all
64 streams with KET of 1ms and 100ms. We observe that
overlapping is harder to achieve when: a) CC is used, and
b) KET is short. In both cases, increasing KET (and hence
Compute-to-IO ratio) improves overlap. Adding streams also
helps, however, its benefits are limited under CC.
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Fig. 12: Microbenchmark results considering number of
launches, kernel size, and overlapping. Across all figures,
triangle (△) stands for Base and square (□) stands for CC.

Observation 8. Overlapping can improve CC perfor-
mance by hiding data movement operations (i.e., encryp-
tion overheads). Ideally, increasing the KET to achieve
a higher compute-to-IO ratio may enhance overlap effi-
ciency.

B. Quantization

After the characterization and analysis of various GPGPU
benchmarks and microbenchmarks, in this section, we focus
on characterizing convolutional neural networks (CNNs) and
large language models (LLMs). These workloads may process
private data, but in this study, we are using open-source data,
and training is done on public models.

CNN Workloads. We evaluate six CNN mod-
els—VGG16 [110], ResNet50 [111], MobileNetv2 [112],
SqueezeNet [113], Attention92 [114], and Inception-
v4 [115]—trained on the CIFAR-100 [116] dataset for 200
epochs. Using throughput (images per second) and training
time as metrics, we analyze CC performance compared to the
non-CC FP32 training baseline (Fig. 13).

With a batch size of 64 and CC on, throughput drops up
to 36% (average 24%), and training time increases up to 53%
(average 31%). Increasing the batch size to 1024 significantly
reduces overhead, with an average loss in throughput of
7.3% and an increase in training time by 6.7%. We further
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Fig. 13: CNN training throughput and training time for differ-
ent batch sizes under CC and non-CC modes. For a batch size
of 1024, FP16 quantized training is applied. Training time is
normalized to the non-CC FP32 training time.

investigated two quantization optimizations. Automatic Mixed
Precision (AMP) [117], [118], which is commonly used during
training, worsens performance for small batch sizes due to
additional computations (e.g., precision casting). With a batch
size of 64, AMP reduces CC throughput by up to 50%
(average 19.7%) and increases training time by up to 92%
(average 50.9%). However, AMP becomes effective with larger
batch sizes. For example, with a batch size of 1024, AMP
outperforms the non-CC AMP baseline, increasing throughput
by up to 40.8% (average 11.8%) and reducing training time by
up to 24.4% (average 7.8%). Since AMP does not significantly
reduce the amount of data transferred between the CPU and
GPU, we applied FP16 quantization [119] to the largest
batch size. This further reduced training time by up to 46.1%
(average 27.7%).

LLM Workloads. To demonstrate the impact of CC on
LLMs, we evaluate the inference throughput under different
configurations. Specifically, we deploy the Meta-Llama-3-
8B [120] model and tested two inference backends: Hugging-
Face (HF) [121] and vLLM [122]. Since the model uses 16-bit
parameters, we further evaluated a 4-bit quantization solution,
Activation-aware Weight Quantization (AWQ) [123], which
selectively quantizes the weights.

Fig. 14 shows the throughput speedup of vLLM compared
to BF16|CC-off|HF baseline at the same configuration.
Throughput is measured as the number of tokens generated
per second for batched requests. All data points represent
the median of three runs. It shows that vLLM consistently
outperforms (i.e., all numbers shown in Fig. 14 are larger than
one) HF in throughput across all configurations, even when CC
is enabled. In general, we make two additional observations.
First, CC-on is worse than CC-off for both BF16 and AWQ.
Second, throughput of AWQ is higher than BF16. Interestingly,
BF16 performs better than AWQ for larger batch sizes (64 and
128) [124]. In some cases, such as with batch size 8, the BF16
model even performs better with CC-on than with CC-off.
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Fig. 14: Throughput speedup of the vLLM serving framework
for the Llama-3-8B model. All values are compared to the
HuggingFace non-quantized CC-off baseline. The BF16 model
represents the non-quantized configuration, while AWQ indi-
cates the 4-bit Activation-aware Weight Quantization.

Observation 9. For CNNs, quantization (i.e., FP16)
reduces training time as it cuts down the amount of data
transferred between CPU and GPU. As for LLMs, the
serving backend significantly affects inference through-
put. Overall, vLLM outperforms HF in both quantized
and non-quantized models and remains robust with CC
enabled.

VIII. RELATED WORK AND DISCUSSIONS

To the best of our knowledge, this is the first work that
dissects the performance overheads of GPU-based confiden-
tial computing and evaluates optimizations to address those
overheads. In this section, we discuss some additional prior
works related to this paper.

Optimizing Software Encryption. Encryption of CPU-GPU
data transfers is implemented using OpenSSL. Although it
leverages AES-NI for hardware-accelerated encryption, it re-
mains a single-threaded process, making encryption inefficient.
However, directly enabling multi-threading at the CUDA API
level is not feasible, as such calls would block the application.
Tan et al. [19], [125] modified the OpenSSL and CUDA
memory copy API implementations at the runtime library
level, allowing them to use multiple worker threads to perform
encryption in parallel. They further overlap the (de)encryption
process with GPU execution to reduce overhead. Similar
approaches have been explored by Wang et al. [126]. They
proposed several optimizations to increase the parallelism of
authentication and overlap GPU cryptographic kernels with
PCIe transmission. GPU cryptographic kernels have also been
used in HIX [11] and LITE [127] to construct customized
GPU TEEs. However, since these techniques are implemented

outside the NVIDIA H100 CC, it remains unclear how they
can be integrated into the CC framework.

TEE and Device. Many studies have explored customized
TEEs for external devices. For example, IceClave [128] intro-
duced a TEE for SSDs to enable secure in-storage computing,
utilizing a Bonsai Merkle Tree (BMT) with a hybrid-counter
scheme for memory encryption and verification. Other SSD
encryption schemes, such as D-Shield [129], have also been
proposed. Since SSDs are a potential solution to the GPU
memory wall problem [130], integrating them into the CC
framework could benefit large memory footprint applications.
Similarly, efforts have been made to secure Network Interface
Cards (NICs). Zhou et al. proposed S-NIC [131], which
isolates network functions for secure outsourcing. Li et al.
introduced Bifrost [17], integrating the Mellanox Connect-X6
NIC into AMD CVM and optimizing the CVM-IO tax with
minimum modifications to the kernel. A major contributor to
this tax, as discussed in the TDX-based GPU CC context, is the
bounce buffer. Additionally, recent work has explored scaling
counter-mode encryption for multi-GPU networks [132].

IX. CONCLUSIONS

In this paper, we characterize and analyze the performance
of GPU-based confidential computing (CC) systems, uncov-
ering substantial overheads in data transfer, memory man-
agement, encryption, and kernel launches. Through detailed
analysis, we investigate optimization techniques—including
kernel fusion, overlapping, and quantization—to reduce CC-
induced overheads, while discussing the trade-offs involved.
We hope our findings and insights contribute to a deeper
understanding of CC on GPU-based systems and guide future
efforts in performance optimization.

CODE AND DATA AVAILABILITY

The code, scripts, and data associated with this pa-
per can be found here: https://github.com/insight-cal-uva/
hcc-ispass25-artifact. This paper is solely focused on per-
formance evaluation and does not uncover any new security
vulnerabilities. All data, models, and tools used in this paper
are based on publicly available projects.
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APPENDIX

A. Abstract

Our artifact provides the necessary scripts, processed data,
and source code to reproduce Figures 3 through 13 in the pa-
per. Additionally, it includes scripts for system configuration,
building a TDX-patched kernel and launching a TD.

B. Artifact Check-List (Meta-Information)
• Compilation: CUDA, Python
• Run-time Environment: Tested on x86
• Output: Profile reports and generated figures
• Disk Space Requirement: Approximately 500GB
• Workflow Preparation Time: Approximately three hours
• Experiment Execution Time: Approximately one week
• Publicly Available?: Yes
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

15226687

C. Description

1) Accessing the Artifact: The artifact can be accessed by
downloading the code archive from the provided URL.

https://doi.org/10.5281/zenodo.15226687
https://github.com/insight-cal-uva/hcc-ispass25-artifact
2) Hardware Dependencies: The experiments were con-

ducted on the following hardware setup:
• Intel Xeon 6530 Gold CPU
• NVIDIA H100 GPU
• Supermicro SYS-421GE-TNRT3 Server

D. Installation

To set up the environment, download the code archive and
assume you are already in the $ROOT directory, which is the
location where the archive is stored. All operations require
sudo.
1. Build the TDX-patched kernel: Please follow [13] to build
the Linux kernel. The TDX tools are included in the code
archive at tdx-tools-2023ww15/.
2. Verify the TDX status run:
hcc-scripts/tdx_check.sh

3. Disable Hyperthreading run:
hcc-scripts/hyperthreading.sh 0

4. Disable NUMA balancing run:
hcc-scripts/numa_balance.sh 0

5. Lock the CPU frequency run:
hcc-scripts/cpu_freq_lock_full.sh

6. Set the GPU to CC mode. Update the GPU ID in the script
before execution:
hcc-scripts/gpu-admin-tools/cc_on_1.sh

7. Unbind the GPU PCI driver. Update the GPU ID (can be
get from nvidia-smi) in the script before execution:
hcc-scripts/unbind_pci_1.sh

8. Resize the QEMU guest image to 500GB following [13].
9. Launch the TD:
cd hcc-scripts/tdx-tools-2023ww15
./qemu_launch_cvmgpu.sh

10. Copy the entire code archive into the TD and install CUDA
inside TD:
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hcc-scripts/td_guest_cuda.sh
11. Follow the instructions in the README file provided in
the code archive to execute performance evaluation experi-
ments.

E. Experiment Workflow

To generate a specific figure (e.g., Fig. x), execute:
cd figx
python figx.py

F. Evaluation and Expected Results

The generated figures will be stored in:
figure/
These results should match those presented in the paper.

G. Methodology

The submission, reviewing, and artifact badging methodol-
ogy follows:

• https://www.acm.org/publications/policies/
artifact-review-and-badging-current

• https://cTuning.org/ae
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