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Abstract—Graphics Processing Units (GPUs) have become the
default choice of acceleration in a wide range of application
domains. To keep up with computational demands, the GPU
memory system is constantly being innovated from both the
cache and DRAM perspectives. Such innovations can adversely
affect GPU reliability and in fact, can lead to an increase
in the number of multi-bit faults. To address this problem,
we systematically study a wide range of GPGPU applications
and find that usually, only a small percentage of data needs
protection to increase application resilience. This data is highly
accessed and shared (constitutes hot memory), which implies
that faults in this space can often lead to incorrect application
output. An in-depth analysis of application code shows that
information of such data can be passed on to the hardware to
guide low-overhead detection/correction schemes. In this vein,
we developed low-overhead partial data replication schemes that
exploit latency tolerance in GPUs. Overall, this data-centric
approach dramatically improves GPGPU application resilience,
with a minimal additional average performance overhead of 1.2%
for detection-only and 3.4% for detection-and-correction.

Keywords—GPUs; Reliability; Multi-bit Faults; Application
Resilience

I. INTRODUCTION

Graphics Processing Units (GPUs) have become an inevitable
part of every computing system due to their ability to provide
large improvements in performance and energy efficiency
compared to CPUs [2]–[4], [7], [28], [30]–[32], [37], [57],
[62], [65]. Consequently, they have become the default choice
for accelerating innovations in various fields such as high-
performance computing (HPC), artificial intelligence (AI), and
even reliability-critical autonomous vehicle software [14], [49]–
[51], [53], [55], [59], [61], [65]. The emerging computing
needs of these domains have fueled the growth of GPU
architectures. Especially, the growing focus on deep learning
has increased GPU demands tremendously. Almost every year
AMD and NVIDIA unveil new GPU designs that incorporate
significant innovations to their GPUs leading to improved
performance and energy efficiency. For example, the latest
Ampere architecture [54] has an L2 cache size that is 10x larger
comparing to previous generations and new high bandwidth
memories are being incorporated into almost all new GPUs.

The effect of the above innovations on GPU reliability is not
yet well-understood. For example, advanced DRAM architec-
tures make single-bit and multi-bit faults more common [44]–
[46], [64], [66]. Similarly, low voltage cache design proposals
(i.e., AMD Killi [17] or IBM Dante [6]) for managing power
consumption of large last-level caches in GPUs [17], [54] can
cause an increased number of multi-bit faults. These multi-

bit faults can lead to catastrophic failures, such as accidents
of autonomous vehicles [10], [24], [35], [56]. Unfortunately,
the existing ECC mechanisms cannot correct multi-bit faults.
SECDED is only capable of detecting up to two-bit faults
and of correcting one-bit fault only. Other mechanisms such
as ChipKill [11] are currently not feasible in GPUs [29].
Popular methods such as check-pointing [19], [29], [48] come
with significant overhead costs due to the large amounts of
data the GPGPU applications typically process [25]. Similarly,
redundant computation techniques, if not carefully performed,
can lead to significant overheads in terms of both performance
and energy [13], [20], [40], [69], [70].

In order to provide low-overhead reliability in GPUs,
especially in the context of multi-bit faults, we take a data-
centric approach. Based on our extensive application-level
analysis, we find that for a large number of applications, only
a limited amount of data needs additional reliability protection
compared to the baseline SECDED. Such data constitutes
a small fraction of the entire application memory, is read-
only, and is highly accessed and shared across the majority
of concurrently executing warps. We show that if this data is
subject to multi-bit faults, it can lead to incorrect application
output (e.g., high mis-classifications errors in the case of neural
networks) as the faulty data is accessed by multiple thread
instructions across the majority of warps. Interestingly, we
observe that this critical portion of the data can be profiled
and this information can then be passed on to hardware for
developing low-overhead correction and detection mechanisms.

To the best of our knowledge, this is the first work that takes
a data-centric approach towards improving GPU reliability
while incurring low overhead. In summary, this paper makes
the following contributions:
• We perform detailed application-level analysis to show that

a small fraction of critical data (hot memory blocks) used by a
large number of GPGPU application threads can dramatically
increase thread vulnerability to multi-bit faults. This data is
usually read-only and can be profiled with low-overhead.
• We develop both detection and correction schemes for

application resilience that prioritize reliability fortification of
this identified critical data. Our resilience schemes leverage
data information obtained from the application source code
and access pattern for replicating only the hot memory blocks.
• Our reliability management schemes exhibit very limited

overhead due to the small fraction of data that gets replicated
and to the fact that the performance overhead of additional
checks (and associated memory accesses) is largely hidden



thanks to the latency tolerance property of GPUs.
Quantitatively, our resilience schemes significantly improve

GPU reliability by dropping the number of silent data corrup-
tion (SDC) outcomes in the application runs by 98.97% on
average, while incurring a low average performance overhead
of 1.2% for detection and 3.4% for detection-and-correction
scheme.

II. BACKGROUND AND FAULT INJECTION SETUP

In this section, we present a brief overview of the baseline
GPU architecture and the sources of faults in the caches and
memory. Finally, we describe the fault injection model and the
error metrics for each application used throughout the paper.

A. Baseline GPU Architecture

Figure 1 shows a generic GPU architecture. It is composed
of a set of cores, known as streaming multiprocessors (SMs)
in NVIDIA terminology. Each SM consists of an array of
processing elements (PEs) and several load/store (LD/ST) units.
Furthermore, each SM is associated with an L1 cache shared
across the PEs. Next, all SMs on the GPU share multiple L2
cache banks which are connected through an interconnection
network. Each L2 cache bank is connected to a separate
memory channel. Finally, all SMs are supported by high-
bandwidth off-chip global memory (DRAM). Throughout the
paper, we evaluate the proposed techniques on a cycle-level
GPU simulator – GPGPU-Sim [5]. Note that we assume that
caches and memory are already protected by SECDED ECC
and hence we focus only on the effect of multi-bit errors
on application output. Table I provides more details on the
simulated architecture.

Fig. 1: A Schematic of the Baseline GPU Architecture.

TABLE I: Key configuration parameters of the simulated GPU.

Core Features 1400MHz core clock, SIMT width = 32 (16 × 2)
Resources / Core 32KB shared memory, 32KB register file, 15 SMs
L1 Caches / Core 16KB 4-way L1 data cache, 2KB 4-way I-cache

128B cache block size
L2 Caches 16-way 256 KB/memory channel (1536 KB in total),

128B cache block size
Memory Model 6 GDDR5 Memory Controllers, FR-FCFS scheduling

16 DRAM-banks, 924 MHz memory clock
Interconnect 1400MHz interconnect clock

Program Execution Model. A CUDA program consists of
multiple functions known as kernels. A kernel is launched
across many threads, where each thread is responsible for a
set of instructions to be processed on the PEs. The threads are
organized in groups, known as Co-operative Thread Arrays
(CTAs). The number of CTAs and their size (i.e., the number

of threads per CTA) are configured by the programmer at the
kernel launch time. Each CTA is assigned to one SM. The
number of CTAs assigned per SM is governed by the resources
available per SM. Threads of a CTA are executed on the PEs
at a granularity of warps, where each warp is usually a group
of 32 threads. Within a warp, all 32 threads are processed in
lockstep, executing the same instructions on different data.

B. Data Memory Faults in GPUs

Hardware faults arise due to particle strikes, temperature/-
voltage fluctuations, or process variations [42]. Prior work has
shown that GPUs are susceptible to a variety of faults [17],
[41], [44], [45], [63], [64], [66]. In this work, we focus on
faults occurring in the GPU memory hierarchy. Single-bit and
multi-bit faults in the storage cells or the read logic of the
SRAM (cache) and DRAM may cause errors in the stored
data [8], [12], [26], [27]. Consequently, the application may
read erroneous data resulting in silent data corruption (SDC)
in its output.

The impact of the data memory faults on the application
output depends on the application usage. For example, a
memory fault in the GPU while executing a convolution neural
network (CNN) can result in image mis-classification. If the
CNN is employed in self-driving automobiles, then such mis-
classification can cause catastrophic results, including loss of
lives. We provide more details on the effects of faults on
applications in Section III-C.

GPUs use (SECDED)-based error checking and correc-
tion (ECC) codes to address the faults in GPU caches and
memory [29]. SECDED ECC detects and corrects single-bit
faults, and detects double-bit faults in the application memory.
However, the growing multi-bit faults are harder and expensive
to detect and correct. This is the focus of this paper.

C. Fault Injection Setup

1) Fault Model: To emulate data memory errors caused by
faults in caches and DRAM, we follow the error emulation
framework described by Luo et al. [39]. To this end, we inject
faults in the data memory blocks allocated by the application
address space, irrespective of how they are mapped in the
caches and DRAM. To clearly show the impact of increasing bit
faults, we run two sets of fault injection experiments: first, we
inject faults only in a single memory block. Second, we inject
faults in 5 different memory blocks. For brevity, additional
options are not shown.
1 data memory block: We select one 128B data memory
block from the application address space. The memory block
selection is determined by the objective of the fault injection
experiment (refer to Sections III-C and V-B for details).
5 data memory blocks: Here, we select 5 128B data memory
blocks from the application address space. As in the 1 memory
block case, the block selection depends on the objective of the
fault injection experiment.

Within the selected memory block(s), we randomly target
a word to inject faults. The injected faults are modeled as
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TABLE II: Output Error Metrics for Applications.

Application Output Format Error Metric
C-NN Vector Classifications Percentage of Mis-

sclassifications in output.
P-BICG Result Vector Percentage of output vector

elements with different
values than the baseline.

P-GESUMMV Result Vector
P-MVT Result Vector
A-Laplacian Filtered Image Normalized Root Mean

Square Error compared to the
baseline image.

A-Meanfilter Filtered Image
A-Sobel Edge Detected Image
A-SRAD Image

permanent and stuck-at faults. Furthermore, for stuck-at faults,
we assumed that a faulty bit is stuck at either a logical 0 or 1
with equal probability. To study the effect of multi-bit faults
on the application output, we inject either 2-bit, 3-bit, or 4-bit
faults at random bit locations within the target word. For each
setting, we execute 1000 runs to achieve statistically significant
results [22], [33], [47].

2) Error Metric Selection: The faults in the data memory
blocks may go undetected by SECDED-ECC in GPUs and
cause an incorrect application output. This is a case of silent
data corruption (SDC). To identify whether a fault-injected
application run results in an SDC output, we adopt metrics
tailored to each application. For the applications from the
Polybench suite, the output is either a single- or multi-
dimensional vector. To determine whether the output is an SDC,
we note how many vector elements deviate from the fault-free
baseline output vector. Applications from the Axbench suite
generate images as output. Therefore, we compare the output
image from a fault-injected run with the output image from
the fault-free baseline run. Table II details the error metric
selected for each application. For each application, we set a
threshold value (either directly provided by the benchmark
suite or reasonably set based on the application behavior) to
determine output quality, that is, whether the application run
resulted in an SDC outcome.

III. MOTIVATION AND APPLICATION ANALYSIS

In this section, we first highlight the problem of increasing
memory faults in GPUs. Next, we analyze the application
memory access pattern and illustrate that a small fraction
of data memory (hot memory) in GPGPU applications is
highly accessed and shared across multiple warps. Finally,
we demonstrate the vulnerability of GPGPU applications to
faults in hot memory.

A. Problem Definition and Goals of This Work

Current Trends. Innovations in GPU memory systems lead
to tremendous growth in performance and energy efficiency.
For example, the on-chip GPU cache sizes are consistently
increasing across GPU generations to accommodate increasing
working data sets, see Figure 2. From the DRAM perspective,
memory bandwidth and capacity are growing consistently.
Advanced high-bandwidth memories (HBM) in GPUs now
have up to sustained bandwidth of 1-2 TB/sec with capacities
of 16-32GB [54].
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Fig. 2: L2 Cache size trends for NVIDIA and AMD GPUs.

Unfortunately, the effect of memory innovations on GPU
reliability is not well understood. Recent efforts are directed
towards reducing on-chip power mainly by operating the caches
at near-threshold voltage [17], [18] but such reduction leads to
a significant increase in multi-bit faults [18]. Previous studies
have demonstrated that SECDED ECC is not sufficient to
mitigate faults in DRAM [41], [63], [64]. Sridharan et al. [63],
[64] showed through a field study that DRAM failures are
dominated by permanent faults rather than transient faults and
result in faulty data. Another field study by Martino et al. [41]
compares CPU and GPU error rates and demonstrates that
GPUs are three-orders of magnitude more susceptible to errors
than CPUs.
Our goals. In this work, we aim to devise performance-efficient
resilience schemes to address the multi-bit faults in L2-caches
and DRAM. Since GPUs operate on large amounts of data
in parallel, addressing the faults in the entire memory space
incurs high performance and storage overhead [13]. Aiming
to minimize this overhead, we propose a selective memory
protection technique that is based on the observation that
protecting only a small fraction of the data memory against
multi-bit faults is sufficient to provide high reliability. To
illustrate the above, we first analyze the memory access pattern
of applications to identify if there is a fraction of memory
with a high number of accesses comparing to the rest of the
memory blocks. We show that this data is highly accessed and
shared across multiple warps. We term the memory blocks
of this highly accessed and shared fraction of the memory
hot memory blocks. Next, we show that faults in hot memory
blocks can result in silent data corruption (SDC) of the
application output. Finally, we develop mechanisms to identify
the hot memory blocks. Our analysis of several application
codes shows that the hot memory blocks are usually read-
only, constitute a very small fraction of the total application
memory, and can be identified quickly. Using these insights, we
propose two selective memory protection mechanisms, where
we duplicate/triplicate the hot memory blocks to achieve low-
overhead detection/correction schemes. We also show how
reliability-performance trade-offs can be achieved by adjusting
the amount of replication.

B. Application Access Pattern Analysis

Application Selection. To evaluate the impact of the proposed
resilience schemes, we focus on applications with a clear
and quantifiable output. Applications are drawn from popular
benchmark suites including CUDA-SDK [52], Polybench [58],
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(a) C-NN (b) P-BICG (c) P-GESUMMV (d) A-Laplacian

(e) A-Meanfilter (f) A-SRAD (g) C-BlackScholes (h) P-GRAMSCHM

Fig. 3: Normalized number of accesses to data memory blocks. For (a)-(f), we note that very few memory blocks experience a very
high number of RD accesses compared to other blocks.

and Axbench [73]. We also ensure that the selected applications
show variability in terms of memory access patterns.
Application Classification based on Access Pattern. We
examine the read (RD) accesses to the data memory blocks from
the application address space. We focus on the RD accesses as
they are the most dominant ones in the memory access pattern.
We analyze the access count to each memory block of the
application under observation. In Figure 3, we show example
plots for 8 applications, where the RD access counts to each
memory block are sorted from low to high. Based on the access
patterns in Figure 3, we split the applications into two primary
categories. First, for applications in Figure 3(a)-(f), we note that
few memory blocks account for a high number of RD accesses.
Specifically, for C-NN, the memory block with the highest
number of RD accesses has 4732-times more RD accesses than
the memory block with the least number of RD accesses. On
the other hand, for applications in Figure 3(g)-(h), we note that
no memory blocks have high RD accesses compared to the rest
of the memory blocks. For example, for C-BlackScholes, the
numbers of accesses across different memory blocks are equal.
Lastly, for P-GRAMSCHM, the number of accesses increases
in small steps, and therefore, there are no memory blocks with
a disproportionally high number of RD accesses.

Here, we focus on applications demonstrating access profiles
similar to those shown in Figure 3(a)-(f), where a small number
of memory blocks accounts for a very high number of RD
accesses compared to the rest of the memory blocks. Table II
lists the selected applications.
Observation I: For several GPGPU applications, a small
number of data memory blocks incurs a very high number of
read (RD) accesses as compared to the rest of the memory
blocks.

Warp-level Spread of Highly Accessed Data. Next, we
profile the RD accesses of applications listed in Table II to see
if the highly accessed data memory blocks are always shared
across multiple warps. To this end, we plot the number of
warps accessing the data memory blocks, with memory blocks
sorted by the total number of RD accesses from low to high,

see Figure 4.

(a) P-BICG (b) A-Laplacian

(c) C-NN (d) A-SRAD

Fig. 4: Percentage of active warps accessing the data memory
blocks.

Figure 4(a)-(b) (P-BICG and A-Laplacian), show that the
highly accessed memory blocks are also shared across all the
active warps. This trend is representative of all applications
in this study except for C-NN and A-SRAD. For C-NN
and A-SRAD, see Figure 4(c)-(d), we note that while the
highly accessed data memory blocks are not shared across all
warps, they are still highly shared across multiple warps when
compared to the rest of the memory blocks.
Observation II: Highly accessed data memory blocks are
typically shared across a large number of warps compared to
the rest of the memory blocks accessed by the applications.
Therefore, an error in the hot memory blocks (that are highly
accessed and shared) can spread across a large number of
warps, making output degradation increasingly likely.

C. Impact of Faults in Data Memory

Having identified the hot memory blocks in Section III-B,
here we test our hypothesis that faults in these hot memory
blocks likely cause an SDC of the application output. Figure 5
illustrates our fault injection setup to demonstrate the effect of
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Fig. 5: Fault injection methodology to evaluate application
vulnerability of hot memory blocks to the memory faults. The
data memory blocks are sorted based on the total number of
accesses to each block.

faults in the hot memory blocks as compared to the rest of the
memory blocks. The data memory blocks are divided into two
categories based on the access count profile shown in Figure 3:
hot memory blocks and the rest of the memory blocks ( 1 ). As
explained in Section II-C, we do two distinct experiments: 1)
with 1 block for fault injections per run and 2) with 5 blocks
for fault injections per run. To demonstrate the likelihood of
SDC output if faults occur in the hot memory blocks, we select
random data memory blocks only from the hot memory blocks.
We randomly target a word within each selected block ( 2 ) and
then inject faults at random bit locations in the target word
( 3 ). Next, to show the likelihood of SDC output if faults are
injected in the rest of the memory blocks, we select random
data memory blocks only from that space for fault injection.

We compare the SDC of the application output in both
cases. Figure 6 shows the number of SDC outcomes for the
hot memory blocks and the rest of the memory blocks. For
all applications, we notice a clear trend: the number of SDC
outcomes increases as the number of faults for the selected
data memory blocks increase. Furthermore, as the number of
faulty data memory blocks increase (5 faulty blocks vs 1 faulty
block), the number of SDC outcomes further increases.
Observation III: Faults in the hot memory blocks likely result
in more SDCs in the application output comparing to faults
in the rest of the memory blocks. Furthermore, as the number
of faulty data memory blocks and/or the number of bit faults
per data memory block increases, the probability of an SDC
output increases.

IV. DATA-CENTRIC RELIABILITY MANAGEMENT:
ANALYSIS, DESIGN, AND IMPLEMENTATION

In this section, we describe the application source code
analysis to identify hot data objects. Based on this analysis, we
introduce two resilience schemes that prioritize the hot memory
for reliability protection to minimize SDCs while incurring
low performance loss.

A. Application Source Code Analysis

As noted in Observation III, the hot memory blocks must be
prioritized for reliability protection. Therefore, we first identify
to which input data objects in the application source code
these hot memory blocks belong. We start by examining the

read-only data objects in the application source code against
the load instructions in the corresponding PTX code. Here, we
provide the analysis for the three representative applications –
namely, P-BICG, C-NN, and A-Laplacian.

We begin with P-BICG. The relatively simple source code of
this application facilitates understanding the access pattern to
the data objects of interest. P-BICG application accepts three
read-only input data objects– A, r and q – for two CUDA
kernel functions. Listing 1 shows the source code for the
first kernel, bicg_kernel1, which accepts A and r. From
Listing 1, we note that A and r are accessed by each thread
of a kernel in a for-loop on line 14. After examining the PTX
code for P-BICG in relation to the addresses of the hot memory
blocks, we note that only the memory blocks of data object
r are highly accessed. This can be seen by examining the
access patterns of A and r with respect to their access indices,
[i * NY + j] and [i], respectively. Note that the offset
for the index of the data objects A increases by a large value
of i * NY + j. Consequently, the data memory blocks of
A show low locality, and hence are not highly accessed and
shared. On the other hand, the index of r increases by a small
value of i, which results in uniformly strided accesses with a
high locality. Consequently, the data memory blocks of r are
highly accessed. We notice a similar access pattern for q in the
second kernel of P-BICG. Out of three read-only input data
objects to P-BICG, r and q experience a very high number of
accesses and are shared across multiple warps.

Listing 1: First Kernel in P-BICG.
1 #define NX 3072
2 #define NY 3072
3
4 __global__ void bicg_kernel1(float *A, float *r, float *s)
5 {
6 int j = blockIdx.x * blockDim.x + threadIdx.x;
7
8 if (j < NY)
9 {

10 s[j] = 0.0f;
11 int i;
12 for(i = 0; i < NX; i++)
13 {
14 s[j] += A[i * NY + j] * r[i];
15 }
16 }
17 }

Next, we analyze source code and the corresponding
PTX code of C-NN and observe that the data objects
Layer1_Weights and Layer2_Weights, which are in-
puts to the kernel functions of the first (shown in Listing 2)
and second (not shown here) layers of C-NN, are highly
accessed and shared across different warps. Here, we focus
only on Layer1_Weights which incurs the highest number
of accesses. Note that Layer1_Weights is accessed on lines
11 and 15 in FirstLayer kernel of C-NN, see Listing 2. The
access generated by a thread of a block on line 11 is to the same
data element of Layer1_Weights across threads of a coop-
erative thread array (CTA)-block. As a result, the corresponding
data memory blocks of Layer1_Weights experience a high
number of accesses from a large number of threads from
different warps. The next access to Layer1_Weights on
line 15 is inside a for-loop. Additionally, the offset to the index
is regular and small ([weightBegin+i]). Consequently, as
noted for P-BICG, this results in uniformly strided accesses
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(a) C-NN (b) P-BICG (c) P-GESUMMV

(d) P-MVT (e) A-Laplacian (f) A-Meanfilter

(g) A-Sobel (h) A-SRAD

Fig. 6: Effect of faults in the hot (highly accessed/shared) memory blocks versus the rest of the memory blocks on the application
output.

to the data memory blocks of Layer1_Weights. Since a
large number of threads execute the corresponding for-loop,
the data memory blocks of Layer1_Weights get a very
high number of accesses. This is also true for the data memory
blocks of Layer2_Weights in the next kernel of C-NN.

Listing 2: First layer in C-NN.
1
2 __global__ void FirstLayer(float *Layer1_Neurons,float *Layer1 Weights,float *

Layer2_Neurons)
3 {
4 int blockID=blockIdx.x;
5 int pixelX=threadIdx.x;
6 int pixelY=threadIdx.y;
7 int weightBegin=blockID*26;
8 int windowX=pixelX*2;
9 int windowY=pixelY*2;

10 float result=0;
11 result+=Layer1 Weights[weightBegin];
12 ++weightBegin;
13 for(int i=0;i<25;++i)
14 {
15 result+=Layer1_Neurons[(windowY*29+windowX+kernelTemplate[i])+(29*29*

blockIdx.y)]*Layer1 Weights[weightBegin+i];
16 }
17 result=(1.7159*tanhf(0.66666667*result));
18 Layer2_Neurons[(13*13*blockID+pixelY*13+pixelX)+(13*13*6*blockIdx.y)]=result;
19 }

Lastly, we examine the source code of A-Laplacian
shown in Listing 3. The access profile (Figure 3(d)) iden-
tifies the data memory blocks of the filter data object
d_LaplacianMatrix as the most highly accessed (see line
24) In contrast to P-BICG and C-NN, the index offset of
d_LaplacianMatrix does not change linearly. However,
since the entire d_LaplacianMatrix fits in one memory
block, its accesses converge to that memory block. Conse-
quently, the data memory block of d_LaplacianMatrix is
highly accessed and shared across multiple warps. Following

d_LaplacianMatrix, width, and height are the next
most highly accessed and shared data objects.

We performed similar application source code analysis for
all applications studied here. Table III lists the read-only input
data objects for the GPU kernel functions of each application
along with their respective sizes. The data objects are ordered
from high to low in terms of the number of accesses, those
identified as hot data objects are in bold and can be identified by
examining the application source code. Lastly, from Table III,
we note that while the hot data objects are highly accessed and
shared, they occupy significantly less space than the rest of the
data objects combined. For example, in C-NN, the hot data
objects, that is Layer1_weights and Layer1_Weights,
occupy only 2.15% of the total application data memory. We
notice a similar trend across all applications.

We also performed runtime temporal analysis on the accesses
to the hot data objects. Since, in most applications, accesses
to the data objects are uniformly strided with small offset,
the accesses have high temporal locality (e.g., for P-BICG).
For other applications such as A-Laplacian, since the hot data
objects are small enough to fit in few data memory blocks,
accesses to these exhibit high temporal locality.

Observation IV: Through offline application source code
analysis, the hot data objects forming the hot memory blocks
can be identified. Furthermore, these hot data objects have a
very small memory footprint (at the most 2.15%) compared
to the rest of the data objects. Lastly, the hot data objects
experience high temporal locality.
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TABLE III: Input data objects to the GPU applications. Data objects are sorted based on the number of accesses incurred (Highest
to Lowest). The emboldened data objects are classified as hot data objects (highly accessed and shared).

Application Input Data Objects Size of hot memory blocks normal-
ized to the total application mem-
ory (in percentage)

Percentage of accesses to hot mem-
ory blocks w.r.t. the total number of
accesses

C-NN Layer1 Weights, Layer2 Weights, Layer3 Weights, Layer4 Weights, Images 2.15 34.99
P-BICG p, r, A 0.064 5.7
P-GESUMMV x, A, B 0.025 4.8
P-MVT y1, y2, a 0.048 5.8
A-Laplacian Filter, Filter Height, Filter Width, Image 0.001 73
A-Meanfilter Filter Height, Filter Width, Image 0.0001 39.89
A-Sobel Filter, Filter Height, Filter Width, Image 0.001 73
A-SRAD i N, i S, i E, i W, Image 0.86 39.67

Note that this analysis can be adapted for other applications
using available binary instrumentation tools for GPUs [1], [68].
The binary instrumentation tools offer two useful functionalities:
First, the memory tracing functionality can be extended to
identify the hot memory blocks. Second, the application
instruction profiling at the binary level can help to identify the
hot data objects. The access pattern and source code analyses
are done once offline, and therefore, have no runtime overhead.

Listing 3: Filter Kernel in A-Laplacian.
1 __global__ void LaplacianFilter(Pixel* g_DataIn, Pixel* g_DataOut,
2 int* width, int* height, float* d LaplacianMatrix)
3 {
4 __shared__ Pixel sharedMem[BLOCK_HEIGHT*BLOCK_WIDTH];
5 int x = blockIdx.x * TILE_WIDTH + threadIdx.x;
6 int y = blockIdx.y * TILE_HEIGHT + threadIdx.y;
7 if( x < FILTER_RADIUS || x > *width - FILTER_RADIUS - 1 || y <

FILTER_RADIUS || y > *height - FILTER_RADIUS - 1)
8 {
9 int index = y * (*width) + x;

10 g_DataOut[index] = g_DataIn[index];
11 return;
12 }
13 int index = y * (*width) + x;
14 int sharedIndex = threadIdx.y * blockDim.y + threadIdx.x;
15 sharedMem[sharedIndex] = g_DataIn[index];
16 __syncthreads();
17 if( threadIdx.x >= FILTER_RADIUS && threadIdx.x < BLOCK_WIDTH -

FILTER_RADIUS && threadIdx.y >= FILTER_RADIUS && threadIdx.y <
BLOCK_HEIGHT - FILTER_RADIUS)

18 {
19 float sum = 0;
20 for(int dy = -FILTER_RADIUS; dy <= FILTER_RADIUS; ++dy)
21 for(int dx = -FILTER_RADIUS; dx <= FILTER_RADIUS; ++dx)
22 {
23 float centerPixel = (float)(sharedMem[sharedIndex + (dy *

blockDim.x + dx)]);
24 sum += centerPixel * d LaplacianMatrix[(dy + FILTER_RADIUS)

* FILTER_DIAMETER + (dx+FILTER_RADIUS)];
25 }
26 Pixel res = max(0, min((Pixel)sum, 255));
27 g_DataOut[index] = res;
28 }
29 }

B. Detection and Correction Resilience Schemes

We leverage the information related to hot memory blocks
(Observations I, II, and IV) to devise detection/correction
schemes. We particularly focus on Observation III that demon-
strates that the hot data objects must be prioritized for protection
against multi-bit faults. As discussed in Section III, the
proposed resilience schemes target multi-bit faults in L2-cache
and DRAM. Our resilience schemes complement the existing
SECDED-ECC protection.

1) Multi-bit Fault Detection: As the read-only hot data
objects prioritized for protection are smaller in size compared
to the total application memory (refer to Table III), we replicate
the hot data objects for “protection”. Replication allows to
easily identify the multi-bit faults by comparing their two
copies.

Given an application, we first sort the data objects based on
the number of their accesses and identify the hot data objects
(this is done with a one-time offline source code analysis as
described in Section IV-A). For the applications studied in this
work, Table III lists all the data objects per application sorted
from high to low number of accesses. The hot data objects to
be prioritized for reliability protection are emboldened.

Next, we duplicate the selected data objects in the GPU
DRAM at two distinct locations. During the application
execution, if a memory access to the data memory blocks
of one of the reliability-protected data objects is an L1-cache
hit, then the normal operation takes place where the data is
returned to the corresponding SM core. However, if the access
is an L1-cache miss, then the LD/ST unit at the L1-cache
generates two accesses, each to one of the two copies of the
data memory block. Once both accesses return data to L1-
cache, the copies of data are compared bit-wise to identify
any multi-bit faults. If a bit mismatch is identified, then our
reliability scheme generates a terminate signal to the GPU
application causing the application to exit early and notify the
user. In this case, the user is expected to rerun the application.

Since the detection-only scheme duplicates the L1-cache
missed accesses to the data memory blocks of selected read-
only data objects, the main source of performance loss is
the additional accesses going to the L2-cache and DRAM.
To minimize performance loss, we leverage the fact that
this is a detection-only scheme: if the protected data is
corrupted, then the application is terminated. Therefore, it is
not necessary to wait for both copies of the data to arrive
before proceeding with the application execution. Instead,
we devise a lazy bit comparison: once we receive the first
data copy for a corresponding load instruction, the execution
moves forward. As soon as the second copy is received,
then the lazy comparison is performed to check for multi-
bit faults. Consequently, any performance loss is minimized as
the execution is not stalled.

2) Multi-bit Fault Detection-and-Correction: We next de-
scribe the second resilience scheme which not only detects
multi-bit faults but also corrects them. To detect and correct
the multi-bit faults, we employ a majority vote mechanism that
is implemented via data triplication. Each copy is stored at
a distinct location in the GPU DRAM with distinct memory
addresses. For each L1-cache missed access for the data object
covered under the reliability scheme, we generate three accesses
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to the L2-cache. Once all three accesses are returned to the
LD/ST unit at the L1-cache, we perform a three-way bitwise
comparison on the received data copies. During the comparison,
if all the data copies have the same bits indicating no bit fault,
then the application execution moves forward. If a bit mismatch
is observed in one of the copies indicating a bit fault, then based
on the majority vote the offending bit is changed to the correct
value. The corrected bit value is used for the computation. Since
the data copies are stored at distinct locations, the probability of
the same bit fault occurring in all three data copies is minimal.

In this detection and correction scheme, we wait for all
three data copies to be received in order to perform the three-
way comparison for data correction. Consequently, the two
sources of performance loss are 1) the increased number of
memory accesses due to the three accesses to the data and 2)
the stall times when the LD/ST unit at L1-cache waits for all
three accesses to return with data. For the set of applications
examined here, we do not observe a significant performance
loss, because the size of the input data objects prioritized for
the reliability improvement is small as shown in Table III.

C. Implementation Overhead

In Section IV-A, we identified the hot data objects via manual
application of source code analysis. For an unknown application,
the same access pattern analysis can be automated with the
assistance of binary instrumentation tools, such as NVBit [68].
Note that this information collection is a one-time process and
typically done offline. Based on the profiled information, the
following steps are performed.

First, we replicate the data objects protected by our resilience
schemes in GPU DRAM (either two or three times, depending
on our target). We store the start addresses of each copy of
the data object. These start addresses are used to generate the
replication accesses to the required data index within the data
object. To do so, we add the memory offset calculated for the
original memory access to the respective start address. For
each data object, we need either 32 bits or (2×32 =) 64 bits
to store the start addresses in the detection-only and detection-
and-correction, respectively. We allocate 128 bytes for the start
address storage, which accommodates (128B/(32×4) =) 32
and (128B/(2×32×4) =) 16 data objects for detection and
detection/correction, respectively. In our analysis, the maximum
number of data objects to a GPU application never exceeds
five (Table III). We use a 32-bit adder to compute the data
index mentioned above for the copy accesses.

Second, to replicate the L1-cache missed accesses to the pro-
tected data objects, we track their respective load instructions.
To do so, we store the addresses of load instructions to the
corresponding data objects in the LD/ST unit near L1-cache.
Each load instruction needs 32 bits to store its address. We
allocate 128 bytes for the instruction address storage, which
accommodates (128B/(32×4)=) 32 load instruction addresses.
In our applications, the number of load instructions does not
exceed 22. The LD/ST unit checks the program counter to see
if one of the load instructions to the protected data objects
experiences a miss, in which case, additional accesses are

generated to the copies of data objects. To compare the data
copies, we use a 256-bit wide comparator for comparing the
data at 32B granularity. Lastly, we allocate 128 bytes to store at
most 32 load instructions awaiting the comparison of their data
copies at the LD/ST unit. Note that all overheads associated
with the data movement and stalls are modeled and final results
already include these overheads.

V. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the proposed
detection-only and detection-and-correction resilience schemes
using the applications listed in Table II.

A. Performance Evaluation

Note that the results presented in this subsection come from
one profiling run only. Figure 7 plots for each application
a) the execution time for each application and b) the L1-
cache missed accesses. All metrics in Figure 7 are plotted
normalized to the baseline case (i.e., the baseline execution
with no resilience scheme). Therefore, the “1.0” value on
the y-axis in each plot represents the baseline value. Note
that the numeric values on the x-axis correspond to the
cumulative number of data objects covered under the resilience
schemes. The data objects covered are by their order of
importance as shown in Table III. For example, for C-NN, “1”
corresponds to Layer1_weights, while “2” corresponds to
Layer1_weights and Layer2_weights, and so on.

1) Detection-Only: For evaluating performance, we focus
on the overhead due to the duplication of accesses in the
detection-only resilience scheme. Therefore, we ignore the
cases where data memory errors result in application crashes.
From Figure 7, we make the following observations. First,
across all applications, as the number of data objects covered
by the detection-only resilience scheme increases, the respective
application execution times increase. This loss in performance
is consistent with the increase in L1-cache missed accesses due
to duplication. Second, the L1-cache missed accesses increase
fractionally when we cover only the hot data objects, which
is attributed to their small memory footprint in addition to
their spatial and temporal locality (Observation IV). Lastly, the
detection-only scheme implements a lazy bit-wise evaluation,
where application execution proceeds when any copy of the
duplicated data arrives at the LD/ST unit of L1-cache. (Recall
that the execution does not stall awaiting both accesses to
arrive.) Therefore, when only the hot data objects are protected,
the corresponding performance loss on average is only 1.2%,
see Figure 7. In contrast, when all data objects are protected,
the average performance loss becomes 40.65% due to the steep
increase in duplicated accesses.

2) Detection-and-Correction: We make the following obser-
vations from Figure 7 regarding the detection-and-correction
scheme. First, similar to the detection-only scheme, as the
number of protected data objects increases, the L1-cache missed
accesses increase but this increase is larger comparing to
detection-only. This is expected as accesses are now triplicated.
In addition, to correct the fault(s), execution is stalled for all
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(a) C-NN (b) P-BICG (c) P-GESUMMV (d) P-MVT

(e) A-Laplacian (f) A-Meanfilter (g) A-Sobel (h) A-SRAD

Fig. 7: Performance overhead of Detection-only (dark bar) and Detection-and-Correction (white bar) resilience schemes. All numbers
are normalized to the baseline case (no reliability protection, 1.0). The hot data objects reside in hot memory blocks.

three accesses to arrive with data. Consequently, the execution
time increases as a function of the volume of the protected
data objects.

It is interesting to note that when we enable detection-and-
correction for hot data objects only, the corresponding average
performance loss is only 3.4% as the increase in the number
of L1-cache missed accesses is still minimal (almost at the
same level as for the detection-only scheme). If all application
data objects were to be triplicated, the average performance
loss shoots to 74.24%. Overall, the performance loss triggered
by the detection-and-correction is much higher than for the
detection-only scheme if all data objects are protected but it is
nearly at the same level with detection-only if only hot data
objects are protected.

B. Reliability Evaluation

We evaluate the two resilience schemes based on the per-
centage of SDC outcomes for 1000 fault injection experiments.
Recall that this number of experiments is necessary to achieve
results of statistical significance (95% confidence intervals with
±3% error margins) [22], [33].

We inject faults in the entire application memory space, see
Figure 8. Specifically, for reliability evaluation, we select the
data memory block(s) where the faults are to be injected based
on its number of L1-missed accesses (a missed access forces
bringing data from L2-caches and DRAM which are highly
susceptible to faults) during an application run ( 1 ). Recall that
we perform two distinct experiments: 1) with 1 block for fault
injections per run and 2) with 5 blocks for fault injections
per run (see Section II-C). We randomly target a word within

Fig. 8: Fault injection for evaluating fault detection-and-
correction: the probability of a memory block selection depends
on the number of its L1-missed accesses (since the proposed
schemes address faults in L2-caches and DRAM).

the selected memory block(s) for fault injections ( 2 ) and then
inject faults at random bit locations in the selected word ( 3 ).

Figure 9 plots the number of SDC outcomes versus the
(cumulative) number of data objects protected by the resilience
schemes. Across all applications, the baseline case with no
enabled resilience scheme is more susceptible to faults. As
we cumulatively protect more data objects, the number of
SDC outcomes reduces. When either the per memory block
bit faults or the number of faulty memory blocks increases,
the number of SDC outcomes increases as well. Across all
applications, protecting hot data objects with the proposed
resilience schemes decreases the number of SDC outcomes
significantly (an average drop of 98.97%) across all fault
injection configurations.1

1In some cases, we observe that the number of SDC outcomes is less than
3% (the statistical error margins). However, the majority of cases, especially
at higher fault rates, demonstrate clear benefits of our schemes.
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(a) C-NN (b) P-BICG

(c) P-GESUMMV (d) P-MVT

(e) A-Laplacian (f) A-Meanfilter

(g) A-Sobel (h) A-SRAD

Fig. 9: Silent data corruption due to faults in L2-cache and DRAM: The x-axis represents the number of protected data objects
cumulatively increasing, starting from the baseline case (no data objects are protected). The y-axis shows the number of SDC outputs
out of 1000 runs for each error injection configuration. The detection-only/dectection-and-correction schemes stop the multi-bit data
memory errors caused by the faults from propagating to the output.

C. Reliability and Performance Tradeoff

Figure 9 shows that in the absence of resilience schemes,
GPGPU applications are highly vulnerable to multiple memory
faults. Yet, as we cumulatively protect an increasing number
of data objects, the number of SDC outcomes decreases, but
at a small performance cost. Figure 7 shows that since the
focus is on protecting a limited number of hot data objects, the
performance degradation due to protection is indeed minimal.
Across all applications, with the detection-and-correction (the
detection-only) scheme, on average hot memory blocks can
be protected with a performance loss of only 3.4% (1.2%)
resulting in a 98.97% drop in the number of SDC outcomes.
On the contrary, if all data are protected the performance

loss becomes 74.24% (40.7%). By selecting the number of
data objects to be protected and especially when protection
is applied to hot data objects only, the desired reliability and
performance tradeoff can be achieved.

VI. RELATED WORK

To our knowledge, this is the first work that makes a case for
data-centric reliability management in GPUs. In this section,
we briefly discuss the works that are most related to ours.
Memory/Cache Errors. Sridharan et al. [64] discovered that
almost half of the DRAM faults are multi-bit failures, and more
than 50% of the DRAM faults are permanent. Tiwari et al. [66]
showed through a large scale GPU study that GPU DRAM is
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most vulnerable to multi-bit errors compared to the rest of GPU
hardware. Furthermore, two independent studies demonstrate
the necessity of improved ECC, such as Chipkill, instead of
SECDED due to increasing multi-bit errors in DRAMs [41],
[63]. Due to increasing cache sizes, several efforts have been
developed to operate caches at low voltage to improve power
efficiency. Recent works have demonstrated experimentally
that bit faults increase as the operating voltage of the cache
reduces [6], [17], [18]. In this paper, we address these multi-bit
faults in cache/memory via low-overhead detection/correction
mechanisms.
Error Injection Studies. GPU-Qin injects fault at the micro-
architecture level to simulate transient faults in GPUs, excluding
caches and memory [15], [16]. LLFI [36] is an LLVM
compiler-based fault injection framework for GPUs, where
an intermediate representation is modified to simulate error
injection. SASSIFI [22] directly injects faults into low-level
SASS instructions. PCFI [60] inject errors in different parts
of instructions to simulate errors in the GPU register files and
memory. Unlike the compiler-based methods used in GPU-Qin
and SASSIFI, Tselonis et al. [67] propose GUFI to validate
the feasibility of using the commonly used GPGPU simulator,
GPGPU-Sim [5] to study the reliability of GPGPU applications.
Nie et al. [47] propose a fault-site pruning mechanism that
dramatically reduces the number of required fault-injection
experiments in GPGPU applications to obtain results of high
statistical significance, this pruning methodology is also adapted
for multi-bit faults [71]. SUGAR [72] speeds up the evaluation
of GPGPU application error resilience by judicious input sizing
and illustrates how analyzing a small fraction of the input is
sufficient to estimate application resilience with high accuracy
while dramatically reducing experimentation time.
Reliability Solutions. Redundant computations by modifying
source code are explored for fault tolerance as GPUs have a
large number of on-chip cores [13]. Thread remapping into
reliable and unreliable warps can facilitate partial replication
mechanisms for error detection/correction at the warp level
and shows superior performance to standard duplication/tripli-
cation [70]. Nie et al. [43] show that when a quantifiable
loss in output quality is acceptable to the user, one can
reduce the overhead of protection/recovery mechanisms by
taking advantage of resilience patterns of threads at different
hierarchies (i.e., kernel/thread-block/warp). Compiler-based
redundant multithreading (RMT) compares the outputs from
replicated computations for error detection, albeit with a highly
variable performance loss [20], [69]. Mahmoud et al. [40]
introduce a replication algorithm to duplicate select GPU
instructions while maintaining low performance loss. Another
approach for fault-tolerance is checkpoint-restart, where upon
the fault occurrence the application restarts from the last
checkpoint [19], [48]. However, the associated overhead of the
checkpoint-restart mechanism is prohibitive [29].

For caches operating at low voltage, Killi [17] offers a
variable ECC mechanism for a subset of L2 cache lines, while
disabling the cache lines with more than one fault at the cost of
cache capacity. Chandramoorthy et al. [6] implement a boosted

SRAM cache, where the cache voltage is boosted for each read
and write operation.

Prior works suggest heterogeneous reliability solutions for
CPU workloads [21], [23], [34], [38], [39]. Hukerikar et al. [23]
devise a software-based parity mechanism to improve the
reliability of critical program objects in HPC applications. Luo
et al. [39] show that applications exhibit different memory error
resiliency based on the error location in DRAM and propose a
hardware/software mechanism to enhance memory reliability.
Li et al. [34] profile scientific applications to relate changes in
application behavior and the location and frequency of error.
SDCTune [38] identifies and protects SDC-prone program data
based on static and dynamic features. Hari et al. [21] deploy
low-cost program detectors in the SDC-crucial section of the
program to identify and reduce SDCs. Ranger [9] restricts
output values of selected layers in CNNs to minimize error
propagation to improve CNN resilience.

The schemes proposed in this work complement the
SECDED ECC by detecting and correcting multi-bit faults in
the GPU L2 cache and DRAM. To the best of our knowledge,
this is the first work that identifies the most vulnerable data
in the context of GPGPU application resilience. Based on this
information, our schemes protect the highly-used input data
objects and provide improved reliability at a low overhead.

VII. CONCLUSIONS

Multi-bit faults are typically an unwanted side-effect of GPU
memory performance innovations. In this paper, we perform an
in-depth application-level analysis of memory access patterns
and show that a large number of applications work on a
limited number of hot data objects of highly-accessed data,
which are also shared by a majority of warps. Such highly
accessed and shared data is vulnerable to faults potentially
leading to silent data corruption in the application output. We
show that as hot data objects constitute a small fraction of the
total memory footprint, protecting them against faults is an
inexpensive solution that provides high application resilience
in the presence of multi-bit faults.
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