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Abstract—Bandwidth achieved from local/shared caches and
memory is a major performance determinant in Graphics
Processing Units (GPUs). These existing sources of bandwidth
are often not enough for optimal GPU performance. Therefore,
to enhance the performance further, we focus on efficiently
unlocking an additional potential source of bandwidth, which
we call as remote-core bandwidth. The source of this bandwidth
is based on the observation that a fraction of data (i.e., L1 read
misses) required by one GPU core can also be found in the local
(L1) caches of other GPU cores. In this paper, we propose to
efficiently coordinate the data movement across cores in GPUs
to exploit this remote-core bandwidth. However, we find that its
efficient detection and utilization presents several challenges.
To this end, we specifically address: a) which data is shared
across cores, b) which cores have the shared data, and c)
how we can get the data as soon as possible. Our extensive
evaluation across a wide set of GPGPU applications shows
that significant performance improvement can be achieved at
a modest hardware cost on account of the additional bandwidth
received from the remote cores.
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I. INTRODUCTION

Graphics Processing Unit (GPU) architectures are be-
coming an inevitable part of every computing system [1]
because of their ability to provide orders of magnitude faster
execution. They have become the default choice for accel-
erating innovations in various fields [2]–[10] such as high-
performance computing (HPC), artificial intelligence, deep
learning, and virtual/augmented reality. Traditionally, GPUs
have relied on bandwidth to achieve high throughput [11]–
[16]. However, the current sources of bandwidth such as
local/shared caches, scratchpad, and memory are often not
sufficient for achieving the peak GPU throughput [11], [17]–
[21]. In this paper, we focus on dynamically identifying
and exploiting an additional source of bandwidth in GPUs,
which we call as remote-core bandwidth. The source of this
additional bandwidth stems from inter-core locality [22]–
[25] that allows the data required by one of the GPU cores
(i.e., L1 read misses) to be also found in the local L1
caches of remote GPU cores. Our analysis shows that this
additional source of bandwidth leads to significant improve-
ment in performance, however, can only be leveraged if
an efficient inter-core communication is enabled. However,
there are several challenges towards designing efficient inter-
core communication, which have not been addressed by
prior works. In particular, this paper addresses the following
research questions.

I) How to determine which data can also be found in
the local caches of remote cores? Traditionally, a cache line

requested by a core is always found in the GPU memory,
as it stores the data required by the kernel(s). However, the
requested data may or may not be found in the L1 cache of
the remote cores due to static data sharing characteristics
or runtime state of the caches [22]–[26]. A mechanism
that correctly predicts if the data is shared would reduce
unnecessary inter-core communication.

II) How to determine which cores have the data of the
requester core? Even if it is known that the data is shared
across cores, determining which cores have the shared data
is critical. A naive approach of sending request probes to all
the cores to fetch the data can incur significant latency and
consume interconnect bandwidth. Therefore, it is important
to determine which cores are likely to have the requested
data to reduce the communication overhead.

III) How to get the data as soon as possible without
congesting the interconnect? Finally, it is important to search
the cores such that we do not saturate the interconnect
bandwidth while still reducing the search latency. This
latency can be tolerated to a certain extent; however, long
latencies can hurt performance [11]. Moreover, long search
delays decrease the probability of finding the shared data
due to cache evictions at the remote core.

To the best of our knowledge, this is the first work that
systematically addresses these questions. Specifically, this
paper makes the following contributions:
•We observe a bi-modal distribution of inter-core locality

across different load instructions – some instructions use
data that is shared across cores and some do not. We leverage
this observation and use the program counter (PC) to predict
which L1 read misses are likely to be satisfied by the L1
caches of remote cores.
• We develop a low-overhead mechanism that can locally

predict which cores are likely to have the shared data. It is
based on our key observation that the data required by a
core is generally shared across only a few cores, which can
be detected via sampling a limited number of core replies.
• We develop a novel two-level probing mechanism that

searches the identified cores in parallel while considering
the interconnect bandwidth consumption.
• Our combined schemes take advantage of the untapped

remote-core bandwidth, leading to 21% improvement (up to
40%) in performance if the data is a priori known to be
shared, and 10% (up to 26%) with our PC-based predictor.
These results are averaged across 11 diverse GPGPU ap-
plications that exhibit inter-core locality and achieved at a
modest area overhead of 0.058 mm2 per core (determined by



detailed RTL synthesis). Additionally, our proposed schemes
do not affect the performance of applications that possess
low inter-core locality.

II. MOTIVATION AND ANALYSIS

Many important graph and HPC applications are known
to be cache sensitive with significant reuse. To capture this
reuse, much attention has been given to improving local
cache performance in GPUs (e.g., [11], [17], [19], [27],
[28]). However, limited focus is given to another type of
locality, called as inter-core locality [22]–[25] (i.e., the data
required by a core can be found in the local L1 caches of
other cores). Inter-core locality primarily results from each
core independently requesting data without consulting the
L1 cache of nearby cores. We find that in many cases, other
GPU cores have previously requested the same data (exact
sharing) or nearby data in the same cache line (false sharing)
and placed it in their local caches [22]. Consequently, they
are also capable of supplying the data and a potential source
of memory bandwidth, which we refer to as remote-core
bandwidth. To unlock this additional bandwidth, efficient
inter-core communication is essential.

A. Inter-core Communication Message Flow

We first provide a high-level overview of how L1 read
miss requests are routed to other cores to exploit inter-core
locality. Under a baseline GPU where inter-core communi-
cation is not enabled (Figure 1(a)), a read request which
misses in L1 goes through the Network-on-Chip (NoC)
and accesses L2 cache. L2 cache either responds with data
or forwards the request to its associated memory channel.
When inter-core communication is enabled (Figure 1(b)),
a read request which misses in L1 (i.e., the requester L1)
can probe other L1 caches (i.e., supplier L1s).1 An L1 read
miss goes through the NoC to probe other L1 caches. If a
supplier L1 has the data, it will respond with data; if not,
it will send a NACK. If no supplier L1 responds with the
data (or NACK) in a given amount of time (we define this
as Timeout), the requester L1 will fall back to the default
scenario shown in Figure 1(a) to probe the L2 cache.
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L1 Read

Request
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Reply

NoC L2 Cache
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Figure 1: Illustrating the L1 read miss handling when inter-
core communication is (a) disabled and (b) enabled.

1The inter-core communication in our proposal is enabled for the read
requests only and thus can co-exist with the existing cache coherence
mechanism. A write request to a shared data in L1 is handled by the default
cache coherence mechanism.

B. Potential Benefits of Remote-core Bandwidth

To illustrate the benefits of inter-core communication in
GPUs, we consider three different scenarios for probing
other GPU cores, as tabulated in Table I. These scenarios
are formed based on the questions we raised in Section I: (1)
is the data shared?; (2) which remote cores have the data?;
and (3) how should the data be fetched? We start with the
assumption that the answer to the first question is known a
priori (we will relax this assumption later in Section III). In
other words, we assume a perfect predictor that determine
if the required data exists in the L1 cache of at least one
remote core.

Table I: Probing/Communication Scenarios.

Scenario Is the
data shared?

Which remote
cores have the

data?

How is the data
fetched?

Perfect Probing
(PP) Known Known Zero-cycle

communication
Direct Probing

(DP) Known Known Direct communication
with the nearest supplier

Naive Indirect
Probing (n-IP) Known Search all

the cores
Sequentially search

the cores one-by-one

The first scenario, called as Perfect Probing (PP ), as-
sumes that we oracularly know which cores have the shared
data, and this data can be fetched in zero cycles (i.e., no
communication overhead). In the next scenario, called as
Direct Probing (DP ), we still assume that the location of the
shared data is known, but a mechanism is required to probe
the nearest core that shares the data and fetch it. Finally,
in the Indirect Probing mechanism (IP ), we assume that
the location of the shared data is unknown, and a single
probe request has to sequentially search all remote cores
one-by-one to fetch the data. This is a naive implementation
of IP, and hence mentioned as Naive IP (n-IP ) in Table I.
Section III discusses our final probing scenario (not shown
in Table I), called as Realistic Probing (RP ), which adopts
intelligent IP mechanisms to efficiently fetch data from the
remote cores, and also a technique to determine if a cache
line is shared by other remote cores.

Figure 2 shows the reply bandwidth received by each
core in terms of L2 reply bandwidth and remote-core reply
bandwidth, and the performance in terms of IPC (both
normalized to the baseline with no inter-core communi-
cation) under the aforementioned probing scenarios. Four
observations are in order. First, on average, the total reply
bandwidth is higher under PP scenario compared to other
scenarios. Therefore, IPC is also the maximum in this
scenario. Specifically, because IPC ∝ BW/MPKI , where
MPKI is misses-per-kilo-instruction [14], [29], unlocking the
remote-core bandwidth shall increase the overall available
bandwidth, which in turn improves IPC. Thus, even if the
overall memory bandwidth can be increased by adding more
memory partitions, the additional on-chip bandwidth from
remote cores can further enhance performance.

Second, the remote-core bandwidth under DP is lower
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Figure 2: Illustrating the performance benefits of remote-core bandwidth for various scenarios. Section IV-A has the details
on the experimental methodology.

in many applications compared to PP. This is due to the
overhead of fetching the data from remote cores. This
overhead is not only in terms of latency of fetching the data;
in some cases, the data is no longer present in the cache by
the time a probe reaches the remote destination. As shown
in Figure 3, this results in a loss in remote hit rate (i.e.,
inter-core locality), which is defined as the ratio of replies
received from the remote cores to L1 read misses. Figure 3
results are normalized to PP with the raw inter-core locality
numbers of PP shown at the top of each application. Third,
with n-IP, the overhead of naive searching is more significant
because of the NoC contention, which further decreases the
remote-core bandwidth of n-IP, and thus its performance.
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Figure 3: Illustrating the loss of inter-core locality (remote
hit rate) for various scenarios.

Finally, the reply bandwidth for P-2DConv is slightly
higher with DP than PP, however, IPC with PP is higher
than DP. This is attributed to the runtime state of the
caches such as cache evictions [22]. Specifically, using
IPC ∝ BW/MPKI , the runtime state of the cache
affects MPKI , which may decrease IPC. Also, using zero-
cycle communication is the main performance booster in
PP. In summary, utilizing remote-core bandwidth boosts
overall performance and is complementary to the bandwidth
received from the memory partitions.

III. INTER-CORE COMMUNICATION IN GPUS

In this section, we discuss the design of inter-core commu-
nication policies, which are required to exploit the inter-core
locality opportunities discussed before.

A. Baseline Architecture and Communication Fabric
Our baseline GPU consists of 28 cores (also called

Compute Units (CUs) or Streaming Multiprocessors (SMs))
connected to 8 L2 slices and memory channels via NoC.

Each core has a local L1 cache, which is connected to its
associated NoC interface. There is a shared L2 cache that
is interleaved across 8 banks. Each L2 bank is connected
to a NoC interface for the incoming L2 requests and to
its corresponding memory controller (MC) for forwarding
the requests to memory in case of L2 misses. We use two
separate NoCs: request and reply NoCs to avoid protocol
deadlock [12]. The L2 requests, probes, and the NACKs
use the request NoC, while the replies from cores or L2
use the reply NoC. Similar to recent works [30]–[33] in
GPUs, we model a 2D mesh NoC for connecting cores to
memory channels because it inherently enables core-to-core
communication. Additionally, a 2D mesh NoC is scalable
as the number of cores increases because it is modular and
easier to lay out on a chip [12], [34], [35].

B. Communication Knobs: Probe Coverage and Probe Rate

To address the performance overheads of inter-core com-
munication discussed in Section II, we consider modulating
the number of cores to search (i.e., controlling the probe cov-
erage) and/or the rate at which the cores are searched (i.e.,
controlling the probe rate). Formally, we define IP(C,S,P),
where S probes are sent per read miss with a probability
of P (0 <= P <= 1), or S − 1 probes per read miss
are sent with a probability of 1 − P , to search C cores
in the GPU system. For example, IP(15,2,0.2) implies that
a core searches 15 remote cores by sending 2 probes per
request for around 20% of its L1 read misses and 1 probe
per request for the rest. In the case of two (or more) probes
per request, the target cores (i.e., the cores to be probed) are
disjointly divided among the probes as equally as possible to
be searched in parallel. For example, under IP(15,2,0.2), the
first probe searches 8 cores and the second probe searches 7
cores. Probe coverage is determined by the value of C and
the probe rate is determined by the value of the pair (S,P ).
Note that both probe coverage and rate affect the consump-
tion of request NoC bandwidth (Request/Core/Cycle), which
is inherently limited. Therefore, it is important to control
each of these parameters carefully (C, S, and P ) to optimize
performance.

C. Which Remote Cores Have the Data?

Effect of Probe Coverage. Figure 4 shows the effect of
probe coverage on the remote hit rate and the request

3



0

0.2

0.4

0.6

0.8

1

C=5 C=10 C=15 C=20 C=27

N
o

rm
a
li
z
e
d

 R
e
m

o
te

 
H

it
 R

a
te

(a) (b)

0

1

2

3

4

C=5 C=10 C=15 C=20 C=27N
o

rm
a
li
z
e
d

 R
e
q

 B
W

(R
e
q

u
e

s
t/

C
o

re
/C

y
c
le

)

L2 Request Probe Request Forwarded Probe Request

Figure 4: Illustrating (a) inter-core locality (normalized to
the PP scenario) and (b) request bandwidth (normalized to
the IP(5,1,1)) under IP(C,1,1) averaged across the evaluated
applications.

bandwidth under IP(C,1,1). The request bandwidth has three
components: a) requests sent to L2, b) probe requests sent to
remote cores, and c) forwarded probe requests from remote
cores. We observe that probing a limited number of cores
can reduce the consumption of the request bandwidth at the
cost of reducing inter-core locality. Therefore, it is important
to carefully select the number of target cores that balances
the available inter-core locality and the NoC overhead (e.g.,
C = 15 in Figure 4).
Which Cores to Probe? Our next goal is to identify the
target cores. This step consists of predicting which cores
have a high probability of providing the shared data and
selecting a subset of them to probe. Figure 5 shows the
heat map of cores that can supply data to requester cores
for representative applications. Each cell in the heat map
represents how many times a particular core is able to
respond to an incoming probe with data. A requester core
is any core that had at least one remote request during
execution. This data is collected assuming that probes can
be sent in zero cycles. We observe from this figure that
some cores can provide the data more than the others. For
example, in C-BFS, the highlighted core is more likely to
provide the data. Similar behavior is observed in the other
applications as shown in Figure 5. Therefore, probing the
cores that have a higher probability of responding with
data is potentially beneficial because it would maintain
inter-core locality, and reduce the request NoC bandwidth
consumption.

Min

Max

(a) (b) (c) (d) (e)

Figure 5: Supplier heat map for (a) C-BFS, (b) R-CFD, (c)
S-SpMV, (d) L-BH, and (e) PP-2MM under the baseline
6×6 mesh NoC. L2 partitions (and MCs) are highlighted
using thick borders. For these applications, the maximum
value in the heat map is 1.94× the minimum, on average.

Selection Criteria. There are multiple design choices when
selecting the set of target cores. Figure 6 shows the per-
formance of IP(C=27,1,1) under two selector mechanisms,
where 27 is the maximum number of cores that can be
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Figure 6: Performance of se-
lection criteria under IP(27,1,1)
averaged across the evaluated
applications. Results are nor-
malized to the baseline with no
inter-core communication.

searched in our 28-core
baseline architecture. In
index-based, which is
used in n-IP, a probe
sequentially searches
the cores assigned to
it based on the core
index in ascending
order. We propose a
supplier-based selector.
In this mechanism,
each core locally and
periodically collects the
number of data replies
received from other cores. This information is then used to
assign probability values for selecting the target cores.2 To
reduce the bias in the selection process, (1) the collected
data is reset at the end of each period, and (2) the cores
that have not replied with data during the current period are
given a very small probability (half of the lowest collected
non-zero probability) to be selected as target cores. Then, C
target cores are selected for probing based on the collected
and modified probability of finding data in each core. We
observe from Figure 6 that our supplier-based selector
outperforms the index-based selector because of its ability
to adapt to the dynamic changes in the sharing patterns.

D. How is the Data Fetched?

Effect of Probe Rate. We study the effect of probe rate
with the help of Figure 7 that shows the performance of
IP(27,S,P ) for C-BFS under index-based and supplier-
based selection criteria. In the index-based case, we obtain
the highest IPC when S = 1 and P <= 1. In other
words, if we send only one probe for a portion of the read
miss requests, while the rest are directly sent to L2, then
performance can improve; with multiple probes per request,
performance drops.
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Figure 7: Performance of C-BFS with index-based and
supplier-based selectors under IP(27,S,P ). Results are nor-
malized to a baseline with no inter-core communication.

2For example, in a four-core system, if Core1, Core2, and Core3
responded to Core0 with data 5, 3, and 2 times during a period, respectively,
then Core0 will select Core1, Core2, and Core3 as target cores with 50%,
30%, and 20% probability, respectively.
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In the supplier-based case, we observe that the peak
performance for C-BFS is shifted to the right (from 1 to 2 ).
This confirms that selecting which cores to search first has
a positive impact on performance. However, performance
still drops when using S > 1. This is because multiple
probes can cause contention in the request NoC resources
(e.g., links, buffers, virtual channel (VC) allocation, switch
(SW) allocation). In addition, multiple parallel probes may
lead to redundant replies, thereby congesting the reply NoC
further. Therefore, it is important to modulate the probe rate
carefully while handling the redundant replies.

One way to improve performance in the presence of
parallel probes is to limit the number of data replies to one,
so that reply NoC is not further congested. Based on this
idea, we propose a novel Two-level Probing scheme.
Two-level Probing. Our two-level probing scheme over-
comes the issue of redundant replies by leveraging two probe
types. The first type is the Leader Probe, which looks for
the data in its assigned target cores and returns once the
data is found (similar to a normal probe). The second type
is the Scout Probe, which also looks for data within its target
cores; however, once it finds the data, it does not return with
data. Instead, it appends the core identifier to the candidate
suppliers list and then searches the rest of the assigned cores.
The scout probe returns once it completes searching. If the
leader does not return with the data, then the requester
initiates the second-level of probing by injecting a leader-
like probe to search all the candidate suppliers sequentially
and return if it finds the data (or failed). There is a singular
leader probe in our scheme, while the rest of the parallel
probes are scouts.
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Figure 8: Illustrating how two-
level probing works. The dot-
ted red lines represent the order
of searching the cores in this
scenario. Gray nodes are con-
nected to L2s and MCs.

To illustrate how two-
level probing works, let
us consider an exam-
ple in Figure 8. As-
sume that S = 2; the
leader probe searches
the shaded cores, while
the scout probe searches
the others. Assuming
that the data is present
in cores A , B , C , and
D , the leader returns
with data (from B ) af-
ter searching three cores,
and the scout searches
all the assigned four-
teen cores and returns
with candidate suppliers
A and D . However, be-
cause the data is found
by the leader, these candidates are ignored. In another
scenario, assume that data is only found in A and D . In this
case, the leader searches all the assigned cores and returns
with a NACK back to the requester. The scout returns with

the candidate suppliers ( A and D ), so the requester injects a
leader-like probe that searches A . On failing to find the data
(for example, evicted by the time the probe reaches A ), it
searches D . In summary, the advantage of two-level probing
is the elimination of redundant replies from different remote
L1 caches.
Discussion. Figure 9 shows the average performance under
IP(C, S, P ) when S and P (probe rate) are varied, while
C (probe coverage) is set to 5, 10, 15, 20, or 27. Since
the request NoC bandwidth is a function of the number of
probes sent and the number of cores to search, decreasing
the number of target cores is expected to release more NoC
resources to accommodate more probes. In that case, we
observe a further shift to the right in the peak performance
(i.e., we observe better performance when more than one
probe search in parallel). Using C >= 20, we barely observe
any benefits from using S >= 2. We can still get benefits
from sending a mix of one or two probes, but not beyond
two probes. On the other hand, using C = 15, we observe
a lower reduction in performance even with S >= 2. Both
C = 10 and C = 5 lead to better performance with S >= 2
compared to C >= 15. To summarize, a trade-off between
the number of cores to search and the parallel probes to
inject is required to balance the overall request bandwidth
and to control the forward request bandwidth.
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Figure 9: Performance with supplier-based selector and two-
level probing under IP(C, S, P ) averaged across the evalu-
ated applications. Results are normalized to the baseline with
no inter-core communication.

E. Is the Data Shared?

We have so far assumed that a requester core had a
priori knowledge of whether the data it requests is cached
by remote cores. In this section, we propose a two-bit
predictor that uses the Program Counter (PC) information
to predict, locally at each core, if the required data exists in
a remote L1 cache. If our predictor anticipates that the data
is shared, the supplier-based core selector and the two-level
probing techniques are utilized to search for the required
data. Otherwise, the request is sent directly to L2.
Why Prediction? We start by studying the need for a
predictor. From Figure 3, we observe that the raw volume
of inter-core locality is not 100% of the read misses.
Additionally, falsely assuming that a read miss is shared
causes latency overhead for the request sent to L2, as probing
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remote L1 caches imposes a search delay. As a result, if we
assume every read miss is shared, it will cause unnecessary
search overhead in the cases when the data is not shared.
For example, in C-BFS, the percentage of shared read miss
request is around 54%. Thus, if we probe remote L1 caches
on every read miss, we will end up with a failed search
for 46% of the requests. In other words, almost half of the
requests will endure unnecessary delay and consume request
NoC bandwidth whereas the data is not shared.
PC and Inter-core Locality. As a first step to designing
a sharing predictor, we need to identify a simple local
parameter to use. We investigated multiple parameters, and
we found that request origin PC is a good metric to consider.
Figure 10(a) shows the volume of remote hits for each PC
value in C-BFS. We observe that out of nine PCs, only two
have inter-core locality (PC = 80, PC = 288), and one
of them (PC = 288) features > 90% remote hits out of
350120 remote read accesses. We observe similar behavior
in other evaluated applications. This observation leads to the
design of our PC-based predictor. If we keep track of the
number of probe requests sent and the core replies received
per PC, then we can develop a local scheme that predicts if
the data is shared.
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Figure 10: Remote hits vs. Remote misses for different PC
under (a) C-BFS, and (b) P-2DCONV. The numbers on each
bar represent the total remote read accesses per PC.

Two-bit PC-based Predictor. Figure 11 shows the finite
state machine for our proposed predictor. It keeps track of
four different states (hence two-bit) per PC. Specifically, the
states are Strong Shared, Weak Shared, Weak Non-shared,
and Strong Non-shared. The predictor optimistically assumes
sharing and starts from a Strong Shared state. If a given PC
fails to show a dominant sharing behavior, it will end up
in the most restrictive state Strong Non-shared. Each state
utilizes three variables (W , S, and T ). These variables are
used along with the inter-core replies count (R) to decide the
next state. Given state i, Wi sets the number of read misses
to be considered during state i. Si sets the number of read
misses that are assumed to be shared out of Wi requests
(Wi >= Si). Once Wi requests are processed, we compare
the number of core replies Ri to the threshold Ti and based
on that, the next state is determined. Based on the current
state, if Ri ≥ Ti, then the next state is set as the state that
provides more sharing. On the contrary, if Ri < Ti, then the
next state is the more restrictive state.
Discussion. We will discuss the effectiveness of the pro-
posed predictor and its accuracy in Section IV. However, we
want to point out one possible concern with our predictor.

Strong 
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Shared

Weak 

Non-

Shared

Strong 

Non-

Shared

tS

tNS

tS tS tS

tNS tNS tNS

Figure 11: Two-bit PC-based sharing predictor. tS refers to
a Sharing transition, while tNS refers to a Non-Sharing
transition.

In Figure 10(b), we show the volume of remote hits for each
PC value in P-2DCONV. In contrast to C-BFS, P-2DCONV
does not have a few dominant PC values. Specifically, eight
out of ten PCs have around 50% remote hits. Addition-
ally, such behavior is spread throughout the execution (not
shown). As a result, it is difficult to have high accuracy
under such application behavior.

F. Implementation Details
Figure 12 shows the architectural diagram of our proposal.

We start by explaining the design choices and scenarios in
our system. Then, we study the area, power, and communi-
cation overheads.
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Figure 12: Hardware organization of our proposal. The
shaded components are used for inter-core communication.
The gray components are added to support our proposal.

Probe Injection. On an L1 read miss, a request is added
to MSHR to be passed down the memory hierarchy. First,
the request is sent to the PC-based Sharing Predictor A1 to
locally predict if the data is present in remote L1 caches.
If the request is predicted to be shared, it will be (1) added
to a queue (Selective L2 Requests) in the Timeout Handler
A2 that selectively sends the request to L2 if needed, and
(2) sent to the Supplier-based Core Selector to select the
target cores for probing A3 . Then, the Two-level Probing
mechanism determines how many probes to send (based on
S and P ), assigns the target cores to the generated probes,
and adds the probes to a queue (Outgoing Probe Requests)
holding the core’s own probes for injection arbitration A4 .
Selective L2 Request Timeout. In some cases, probe
requests take a long time to return (with data or NACK). This
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might be due to several reasons related to NoC congestion
and queuing. We need a failsafe mechanism to ensure
forward progress. Therefore, for every read miss predicted
as shared, a corresponding L2 request is also generated, and
placed into Selective L2 Requests queue. Every cycle, the
Timeout Handler checks if the head of the queue timed out.
Timeout means that the injected probe(s) failed to retrieve
the data from the target cores in a timely manner. In that
case, the head of the Selective L2 Requests queue competes
for injection to be sent to L2 B .
Handling Other Cores’ Probes. On receiving an incoming
probe from a remote core, the probe is added to a queue (In-
coming Probe Requests) in the Probe Handler module C1 .
The forwarded probe is processed to differentiate between a
leader probe, a scout probe, or a received NACK. In case of
a leader or a scout, the Probe Handler consults the L1 Cache
Arbitration module that prioritizes the local cache accesses
over remote reads.3 In case of no local cache access, the L1
Cache Arbitration module informs the Probe Handler C2 to
check the L1 cache if the required data is cached.

If the incoming probe is a leader, and the data is not found,
the probe is added to a queue (Forwarded Incoming Probes)
to forward it to the next target core (or the requester if no
more target cores). However, if the data is found locally,
then a probe reply is added to a queue (Replies to Incoming
Probes) holding the replies to be sent to the requester cores.
The rationale behind this queue is to mitigate the head-of-
line blocking that can occur in the Incoming Probe Requests
queue if the reply failed to find space for injection into the
reply NoC. The head of the Replies to Incoming Probes is
pushed into the reply NoC C3 . On the other hand, a scout
probe updates its candidate supplier list if the data is found,
and is always added to the Forwarded Incoming Probes
queue to be sent to the next target core (or the requester if
no more target cores). The head of the Forwarded Incoming
Probes contends for injection into the request NoC C4 .

In case of a returning own leader/scout, the Probe Handler
notifies the Two-level Probing module D1 to keep track of
the injected probes per request. If all outstanding probes are
received without data reply or candidate suppliers, then the
Two-level Probing module informs the Timeout Handler D2 .
If the timeout of the failed request has not fired yet, it is
retrieved from the Selective L2 Requests queue to compete
for injection to be sent to L2 D3 .
Injection Arbitration. Our design supports different types
of messages to be injected into the request NoC. Conse-
quently, to keep the system stable, we must maintain the
injection rate into the NoC. We do so by arbitrating between
five different request types (ordered from the highest to the
lowest priority): non-shared requests, selective L2 requests,
forwarded probes, processed NACKs, and outgoing probes.
The Injection Arbitration selects the winner of the arbitration

3Dual ported caches may be needed for applications where L1 bandwidth
is not sufficient [36]. However, we do not observe L1 bandwidth as a
bottleneck in our applications and hence arbitration is sufficient.

to be injected into the request NoC based on the priorities
of the competing requests E .
Deflection of Incoming Probes. To control the queuing
delay at the core, a mechanism is required to limit the
number of probes received by a given core. If the Incoming
Probe Requests queue is full, we deflect the incoming probes
at the NoC level by passing a signal from the core to the
NoC router to convey the unavailability of queue space F .
The router then deflects the probe request to its next target
cores or to its requester if no more target cores exist.
Overhead. The PC-based Sharing Predictor supports up to
64 PC values. We empirically select the values of W , S, and
T based on the following, Wi = 32×2i, Si = Wi/4

i, Ti =
ceil(Si/8), where 0 ≤ i ≤ 3. Both Timeout Handler and
the Two-level Probing modules track up to 32 outstanding
requests, which is the MSHR size. The Supplier-based Core
Selector monitors the replies from 27 remote cores (in our
28-core baseline GPU) over a period of 8192 cycles. Finally,
we empirically choose 2048 cycles as the timeout value in
the Timeout Handler. Under this timeout, only 0.7% of the
probe requests fail to return with a reply (or a NACK).

To estimate the area overhead, we differentiate between
the hardware used to enable inter-core communication
(shaded components in Figure 12), and the hardware used
to optimize such communication (gray components in Fig-
ure 12). We faithfully synthesized the RTL design of the
hardware required for the inter-core communication and our
schemes using the 65nm TSMC libraries in the Synopsys
Design Compiler. We use these synthesized Verilog mod-
els for the area and leakage power. Additionally, we use
DSENT [37] to estimate the NoC dynamic power assuming
a 45nm technology. The area overhead for inter-core com-
munication is 0.089 mm2 per core, while the area overhead
for our schemes is 0.058 mm2 per core. The total leakage
power overhead is 2.022 mW per core. The difference in
the dynamic power compared to the baseline is 0.05794 W .

In terms of communication overhead, we add 1-bit in the
request to mark as a probe, and 1-bit to identify as a leader or
scout. A 32-bit group identifier is added to uniquely identify
the probes belonging to the same request. Additionally, up
to fifteen target cores need to be searched, and each core
needs ceil(log227) bits, that is 75 bits required in total. All
this overhead in the request fits in the baseline flit size of
32 bytes.

IV. EXPERIMENTAL EVALUATION

A. Evaluation Methodology

We model our schemes and inter-core communication
using a cycle-level simulator – GPGPU-Sim v.3 [12]. A
detailed platform configuration is described in Table II. We
use sixteen applications from five benchmarks suites (CUDA
SDK (C) [38], Rodinia (R) [39], SHOC (S) [40], Lonestar
(L) [41], and PolyBench (P) [42]) for evaluation. Eleven out
of sixteen applications have inter-core locality greater than
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Figure 13: Illustrating the benefits of the proposed schemes in terms of IPC and reply bandwidth.

Table II: Configuration parameters of the simulated GPU.

Core Features 1400MHz core clock, 28 cores, SIMT width = 32 (16×2)
Resources / Core 48KB scratchpad, 32KB register file, Max.

1536 workitems (48 wavefronts, 32 workitems/wavefront)
L1 Caches / Core 16KB 4-way L1 data cache, 12KB 24-way texture cache,

8KB 2-way constant cache, 2KB 4-way I-cache,
128B cache block size

L2 Cache 8-way 128 KB/memory channel (1MB in total),
128B cache block size

Features Memory coalescing and inter-wavefront merging enabled,
immediate post dominator based branch divergence handling

Memory Model 8 GDDR5 Memory Controllers (MCs),
FR-FCFS scheduling, 16 DRAM-banks, 4 bank-groups/MC,
924 MHz memory clock, Global linear address space is
interleaved among partitions in chunks of 256 bytes
Hynix GDDR5 Timing [43], tCL = 12, tRP = 12,
tRC = 40, tRAS = 28, tCCD = 2, tRCD = 12,
tRRD = 6, tCDLR = 5, tWR = 12

Interconnect 6×6 mesh topology, 700MHz interconnect clock,
32B flit size, 1 VC per port, 8 flits/VC,
iSLIP VC and switch allocators

30% (Figure 2). The rest of the applications have inter-core
locality less than 10%.

B. Experimental Results

In Section III, we studied the effect of both probe cov-
erage C and probe rate (S, P ) on the efficiency of the
inter-core communication under a mesh-based system. We
proposed three techniques (supplier-based core selector, two-
level probing, and PC-based sharing predictor) to exploit
the remote-core bandwidth via efficient inter-core commu-
nication. We evaluate IP(C=15,S=2,P=0.2), an IP scenario
that incorporates supplier-based core selector and two-level
probing under a perfect sharing predictor. Although IP
knows the sharing information a priori, we investigate it
thoroughly as it gives an attainable upper bound of the inter-
core communication benefits via our schemes. In order to
reach such upper bound, we evaluate RP(C=5,S=2,P=0.5),
a Realistic Probing scenario that does not need any software
support and adopts PC-based sharing predictor in addition
to supplier-based core selector and two-level probing.

We choose IP(15,2,0.2) as it balances the trade-off be-
tween losing inter-core locality (due to searching fewer
cores) and incurring latency (due to searching more cores).
In general, given an arbitrary GPU, searching 35%-55% of
the cores is a valid choice to maintain the required bal-
ance under IP scenario. Also, using two probes parallelizes
the search process without overwhelming the request NoC
resources. For RP(5,2,0.5), we reduce the number of target
cores (C = 5) because we use a realistic PC-based predictor.

Specifically, if we use C = 15, any misprediction will result
in searching fifteen cores even though the data is not shared.
This leads to unnecessary latency overhead for the whole
data fetching process. In general, under RP, searching 15%-
25% of the cores balances the inter-core locality and the
request NoC bandwidth consumption. Also, to further reduce
the search overhead, RP(5,2,0.5) uses a higher probe rate.
We compare these mechanisms against:
• DP utilizes a perfect sharing predictor and sends a probe

request to the oracularly known nearest sharer (Section II).
• IP(27,1,1), which is equivalent to n-IP, uses a perfect

sharing predictor, however, it searches all the cores sequen-
tially based on core index to find the shared data (Section II).
• Cooperative Caching Network (CCN) [24] uses a

ring NoC to connect all the cores. On a read miss, CCN
traverses the ring and searches the cores sequentially. To
limit the search overhead, a throttling scheme based on
the ratio between replies received and requests sent, over
a sampling window, is used. Since CCN NoC is a crossbar
augmented with a ring, we emulate it by using index-based
core selector under RP(27,1,1).
• Locality-Aware Last-Level Cache (LA-LLC) [44]

utilizes a locality-aware L2 that records the last sharer core.
Upon receiving a read request from a core, the locality-aware
L2 forwards the request to the last sharer in case of a hit,
instead of serving the request.
Effect on Performance. Figure 13 shows the performance
of our proposed schemes in terms of IPC and total reply
bandwidth received by a core (in terms of L2 reply band-
width and remote-core reply bandwidth), respectively. The
results are normalized to the baseline architecture with no
inter-core communication. We draw five main observations.
First, IP(15,2,0.2) achieves 21% and 8% IPC improve-
ment over the baseline and IP(27,1,1), respectively. The
superiority of IP(15,2,0.2) over the baseline comes from
unlocking the remote-core bandwidth, thus increasing the
total available on-chip bandwidth. However, higher per-
formance compared to IP(27,1,1) comes from searching
fewer cores for the required data with higher confidence.
Also, the possibility of sending two parallel probes helps
in improving the performance as it cuts down the search
latency. Second, DP yields better performance compared
to IP(15,2,0.2) for almost all evaluated applications except
S-SpMV and P-GEMM (also observed in Figure 2). Such
counter-intuitive behavior for these two applications is due
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to the existence of only a few supplier cores for the majority
of the requests (Section III-C), leading to NoC hotspots
near some cores under DP. Consequently, the remote-core
bandwidth is reduced. In contrast, under IP(15,2,0.2), if a
given target core is busy, the request is deflected to the
next target core (Section III-F) thereby alleviating hotspots.
Moreover, DP is dependent on a single target core, thus it
risks the possibility of not finding the data due to eviction
and falls back to probing L2/memory. On the other hand,
IP(15,2,0.2) searches more cores, so even if a target supplier
core evicted the data, the probe moves to the next core in
its supplier list.

Third, the performance of RP(27,1,1) is lower than the
baseline. This is because of the misprediction overhead.
The overhead of searching 27 cores for each misprediction
causes a 15% drop in IPC. Therefore, searching less num-
ber of cores mitigates the misprediction overhead. Fourth,
RP(5,2,0.5) performs better than IP(27,1,1), that utilizes per-
fect sharing predictor, because of its lower search overhead.
Specifically, RP(5,2,0.5) searches only 5 cores compared to
27 cores in case of IP(27,1,1). Also, RP(5,2,0.5) divides the
search process among two probes. As a result, even in case
of failing to find the data, the smaller search space and the
parallel search lessens the overhead. Fifth, the total reply
bandwidth follows the same trend as IPC. This conforms
to what we discussed in Section II. Additionally, the reply
bandwidth from the remote cores in RP(5,2,0.5) is less
compared to the other schemes. This is because RP(5,2,0.5)
searches 5 cores only, thus perceives lower inter-core locality
(refer to Figure 4(a)).

Figure 14(a) shows the precision and recall of
RP(5,2,0.5).4 In general, we find precision and recall to
be high for many applications, except a few ones. These
applications do not have a few dominant PC values as pre-
viously discussed in Figure 10(b). On average, RP(5,2,0.5)
achieves 72% precision and 88% recall. Since the precision
controls the misprediction volume, we investigate the sensi-
tivity to different precision values by studying an imperfect
IP. Figure 14(b) shows the effect on IPC using imperfect
IP(5,2,0.5) and imperfect IP(15,2,0.2), respectively, under
different precision values (100%, 95%, 90%, 80%, and
70%). These precision values are achieved by injecting non-
shared requests into the NoC. A precision of X% under
IP means that (100 − X)% of the non-shared requests are
considered as shared. We observe that the drop in IPC in
IP(15,2,0.2) increases with less precise predictors (up to
85% performance loss). This is because the unnecessary
overhead per mispredicted request is high (searching 15
cores). However, in IP(5,2,0.5), the drop is less severe (up
to 45%) due to lower misprediction overhead (searching 5
cores).

We can further bridge the gap between RP(5,2,0.5) and

4Precision measures the percentage of the shared predictions that were
truly shared. Recall measures the percentage of the truly shared cases the
predictor identified.
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Figure 14: Illustrating (a) Precision and Recall for
RP(5,2,0.5) and (b) Effect of prediction precision on IP.

IP(15,2,0.2) if a software-based technique or a programmer
input is utilized to provide sharing insight. For example, if
a software-based mechanism provides the sharing PC infor-
mation (instead of using the PC-based predictor), we can
achieve performance improvement more than RP(5,2,0.5).
Specifically, for C-BFS2 and S-SpMV, an IPC improvement
of 37% and 5% is achieved respectively, compared to 38%
and 6% in the case of IP(15,2,0.2). To conclude, any increase
in the prediction precision helps improving the performance
of RP(5,2,0.5).

Finally, we evaluate RP(5,2,0.5) against LA-LLC. On
average, RP(5,2,0.5) achieves 10% IPC improvement com-
pared to 2% from LA-LLC. LA-LLC uses the existence
of the data in L2 as sharing indicator and forwards the
read request to the last sharer core instead of serving at
L2. However, the data may be evicted by the time the
request reaches the last sharer. This degrades LA-LLC
overall prediction precision to an average of 60% and as
low as 40% for applications like P-3MM, and P-GEMM. Also,
considering only the last sharer, vs. five cores in RP(5,2,0.5),
in the search space decreases the chances of finding the data.

In summary, using IP(15,2,0.2) allows for higher perfor-
mance as it balances the trade-off between searching more
cores vs. sending more probes. However, searching fewer
cores as in RP(5,2,0.5) is favored if a low-overhead option
is required to balance out any penalty due to mispredictions.
Effect on Link Utilization. Figure 16 shows the effect of
IP(15,2,0.2) and RP(5,2,0.5) on the request and reply NoC
link utilization. We choose three applications as represen-
tatives and compare both mechanisms to baseline and DP.
Two observations are in order. First, in the request NoC,
both IP(15,2,0.2) and RP(5,2,0.5) have higher link utilization
compared to baseline and DP. This is a result of utilizing
the links to communicate among cores for searching and
retrieving the required data. IP(15,2,0.2) achieves better link
utilization in a couple of applications (e.g., C-BFS) due to
searching more cores. Second, in the reply NoC, IP(15,2,0.2)
and RP(5,2,0.5) have similar behavior in the highly utilized
links, however, the lowest utilization in IP(15,2,0.2) is higher
than in RP(5,2,0.5). This is because IP(15,2,0.2) searches
more cores compared to RP(5,2,0.5), thus enabling more
sources to deliver replies. Subsequently, more links are used
to retrieve data from the target cores.
Performance Impact on Applications with low Inter-
core Locality. Some applications have either low inter-
core locality or none. Figure 17 shows the performance
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Figure 15: Sensitivity studies on (a) CTA Scheduling, (b) NoC Resources, and (c) NoC Size.
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Figure 16: Illustrating the effect of the proposed schemes on
the request and reply NoC link utilization.
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Figure 17: Illustrating the effect of the proposed schemes
on applications with low inter-core locality. Results are nor-
malized to the baseline with no inter-core communication.

of five applications, from different benchmarks suites, with
< 10% inter-core locality under PP, DP, IP(15,2,0.2), and
RP(5,2,0.5). Two observations are in order. First, the perfor-
mance gain from PP, DP, or IP(15,2,0.2) is less than 1%. This
is due to the reduced scope of inter-core locality. Second,
our RP(5,2,0.5) does not affect the evaluated applications
negatively. On average, IPC under RP(5,2,0.5) drops 1%
for these applications. This is because the small scope of
sharing drives the PC-based sharing predictor towards the
most restrictive Strong Non-shared state which assumes less
shared requests over a larger window of requests. This
shows that our predictor can handle the absence of inter-
core locality without degrading performance.

C. Sensitivity Studies
Effect of CTA Scheduling. We use the widely-used round-
robin CTA scheduler to achieve better load balancing of
CTAs across cores [11]. However, our proposal should still
be effective under different CTA scheduling mechanisms.
For example, a CTA scheduler that assigns nearby CTAs on
the same core [27] still leaves a significant room to exploit

inter-core locality. Figure 15(a) shows the portion of remote
hit requests that have CTA distance ≤ 8 (with the nearest
supplier core) and above. We observe that for nine out of
eleven applications, the portion with CTA distance > 8 is
more than 50% of the requests with at least one remote hit.
We conclude that even with a CTA scheduler that assigns up
to eight consecutive CTAs on the same core, we still have
a large scope for inter-core communication to unlock the
remote-core bandwidth.
Effect of NoC Resources. Figure 15(b) shows the sensitivity
when increasing the NoC resources. We consider three
configurations; double the NoC frequency, double the flit
size, and double the virtual channels. We also show the
results of the baseline NoC used so far (Section III-A),
denoted as Base. IP(27,S,1) is evaluated under each of them
and normalized to the corresponding configuration baseline.
First, we observe that our schemes are still beneficial even
with double the NoC resources. Second, increasing the
number of probes (S) under 27 cores is still not helpful.
Third, our schemes benefit the most under double the VCs.
This is because searching cores and pushing more probes
cause contention at the VC allocator and SW allocator. Thus,
doubling the VCs may mitigate the VC allocation contention
but at the cost of extra hardware.
Effect of NoC Size. We study the scalability of our schemes
using 8×8 mesh and 10×10 mesh under two different con-
figurations. Figure 15(c) shows the IPC and reply bandwidth
(both normalized to the configuration mesh baseline) under
IP(C%,1,1), where C% represents the percentage of cores
to be searched. The used notation in the figure is (number
of cores, number of L2/memory partitions). We observe that
the IPC follows a similar trend to what we observed using
the baseline 6×6 mesh. Specifically, searching 25% or 50%
of the cores leads to higher performance in terms of both
IPC and reply bandwidth.
Effect of Additional Memory Partitions. Figure 15(c)
shows the effect of increasing the number of memory
partitions (this increases the total L2 capacity, L2 bandwidth,
and memory bandwidth) in the system. For an 8×8 mesh, we
study systems with 8 and 16 memory partitions. For a 10×10
mesh, we study systems with 16 and 32 memory partitions.
We observe that even with more memory partitions, our
proposal enhances IPC due to efficiently unlocking the
remote-core bandwidth.
Effect of Core to Memory Partition Ratio. Figure 15(c)
studies varying the ratio of core to memory partition count.

10



We observe that our schemes can boost IPC in all systems.
Even in a large (68,32) system, IP(C=25%,1,1) achieves
17% IPC improvement over the baseline 10× 10 mesh.
Comparison against a Crossbar-based Baseline. In Fig-
ure 15(c), we observe that our schemes perform better than
a crossbar-based baseline in terms of both IPC and reply
bandwidth under (56,8), (48,16), and (84,16) systems. Under
a large (68,32) system, a crossbar-based baseline performs
close to, but still not as good as, our schemes. Note that for
such large systems, the complexity of the crossbar is high.
Also, the performance difference between the mesh-based
baseline and the crossbar-based baseline is in line with a
simple bisection bandwidth analysis for both systems.5

We conclude that our design is robust and can perform
well across a wide range of hardware mechanisms and
system configurations, such as CTA scheduling policies,
L2/memory bandwidth, and core to memory partition ratio.
It also outperforms the crossbar-based baseline.

V. RELATED WORK

In this section, we briefly discuss works that are the most
relevant to this paper.
Intra-core Locality in GPUs. There is a large body of work
that focuses on exploiting the locality that exists within a
GPU core [11], [13], [17]–[19], [27], [31], [45]–[52]. In
this work, we specifically focus on the locality that exists
across cores. Multiple prior CTA schedulers [26], [53]–[56]
used different heuristics to exploit the locality across CTAs.
However, as shown by prior works [54], [57], [58], there
is no single ideal CTA scheduling policy that benefits all
applications. This is because inter-CTA locality, data access
pattern, and execution time of CTAs are hard to know at
compile time, which increases the complexity of the CTA
scheduling problem. Hence, we choose the round-robin CTA
scheduler as it is the most commonly used. Our analysis
shows that the data sharing across L1 caches is pervasive
and hence our solutions are effective.
Inter-core Locality in GPUs. Prior works proposed mech-
anisms to exploit inter-core locality in GPUs by allowing
communication between multiple L1s by connecting the
cores via a ring NoC [24] or using the L2 cache to forward
the read request to a supplier L1 [44]. Other works proposed
coherence-like mechanisms [59] to enable communication
across L1 caches. Inter-core locality information has also
been used to propose a packet coalescing mechanism to
reduce NoC pressure [25]. Although these works either iden-
tify inter-core locality, propose architectures to enable inter-
core communication, or utilize coherence-like mechanisms,
they do not provide a way to (1) probe multiple L1 caches
in parallel, and (2) identify which L1 caches to probe for
high probe success rate. Our schemes allow the inter-core
communication to be low-latency due to parallel probes, and

5For the systems we consider in this paper, the ratio of crossbar bisection
bandwidth to 2D mesh bisection bandwidth is equal to the ratio of the
number of memory partitions to twice the mesh dimension.

low bandwidth-demanding due to the reduced number of
useless probes sent. Finally, previous works studied coher-
ence communication predictors based on address [60], [61],
instruction [62], or both [63], [64]. These works focused on
tracking coherence events at the directories. Our work uses
an effective PC-based predictor to filter the read misses that
have less probability of sharing across the GPU cores.

VI. CONCLUSIONS

Traditionally, GPUs have been depending on the band-
width from local/shared caches and memory to achieve high
performance. Going forward, other sources of bandwidth
need to be explored and leveraged given that the issue of
bandwidth is going to be even more critical in large-scale
GPU-based systems. Our detailed analysis in this paper
shows that remote-core bandwidth can significantly improve
the GPU performance within a single GPU node. However,
there are several challenges in unlocking this remote-core
bandwidth, which this paper systematically addresses. First,
we leverage the bi-modal distribution of inter-core locality
across PCs to determine which data is expected to be shared
across cores. Second, we dynamically generate an inter-
core locality map that guides the probing mechanism to
determine which cores to probe for increasing the probability
of finding the shared data. Finally, we develop a novel two-
level probing technique to get the data as soon as possible
without saturating the interconnect. We conclude that our
efficient inter-core communication provides a significant
improvement in performance and on-chip bandwidth at a
modest hardware cost.
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